Abstract:Most large language models (LLMs) are sensitive to prompts, and another synonymous expression or a typo may lead to unexpected results for the model. Composing an optimal prompt for a specific demand lacks theoretical support and relies entirely on human experimentation, which poses a considerable obstacle to popularizing generative artificial intelligence. However, there is no systematic analysis of the stability of LLMs in resisting prompt perturbations in real-world scenarios. In this work, we propose to evaluate the ease-of-use of LLMs and construct E-Bench, simulating the actual situation of human use from synonymous perturbation (including paraphrasing, simplification, and colloquialism) and typographical perturbation (such as typing). On this basis, we also discuss the combination of these two types of perturbation and analyze the main reasons for performance degradation. Experimental results indicate that with the increase of model size, although the ease-of-use are significantly improved, there is still a long way to go to build a sufficiently user-friendly model.
Abstract:Out-of-distribution (OOD) detection aims to detect "unknown" data whose labels have not been seen during the in-distribution (ID) training process. Recent progress in representation learning gives rise to distance-based OOD detection that recognizes inputs as ID/OOD according to their relative distances to the training data of ID classes. Previous approaches calculate pairwise distances relying only on global image representations, which can be sub-optimal as the inevitable background clutter and intra-class variation may drive image-level representations from the same ID class far apart in a given representation space. In this work, we overcome this challenge by proposing Multi-scale OOD DEtection (MODE), a first framework leveraging both global visual information and local region details of images to maximally benefit OOD detection. Specifically, we first find that existing models pretrained by off-the-shelf cross-entropy or contrastive losses are incompetent to capture valuable local representations for MODE, due to the scale-discrepancy between the ID training and OOD detection processes. To mitigate this issue and encourage locally discriminative representations in ID training, we propose Attention-based Local PropAgation (ALPA), a trainable objective that exploits a cross-attention mechanism to align and highlight the local regions of the target objects for pairwise examples. During test-time OOD detection, a Cross-Scale Decision (CSD) function is further devised on the most discriminative multi-scale representations to distinguish ID/OOD data more faithfully. We demonstrate the effectiveness and flexibility of MODE on several benchmarks -- on average, MODE outperforms the previous state-of-the-art by up to 19.24% in FPR, 2.77% in AUROC. Code is available at https://github.com/JimZAI/MODE-OOD.