Abstract:Recent advancements in generic 3D content generation from text prompts have been remarkable by fine-tuning text-to-image diffusion (T2I) models or employing these T2I models as priors to learn a general text-to-3D model. While fine-tuning-based methods ensure great alignment between text and generated views, i.e., semantic consistency, their ability to achieve multi-view consistency is hampered by the absence of 3D constraints, even in limited view. In contrast, prior-based methods focus on regressing 3D shapes with any view that maintains uniformity and coherence across views, i.e., multi-view consistency, but such approaches inevitably compromise visual-textual alignment, leading to a loss of semantic details in the generated objects. To achieve semantic and multi-view consistency simultaneously, we propose SeMv-3D, a novel framework for general text-to-3d generation. Specifically, we propose a Triplane Prior Learner (TPL) that learns triplane priors with 3D spatial features to maintain consistency among different views at the 3D level, e.g., geometry and texture. Moreover, we design a Semantic-aligned View Synthesizer (SVS) that preserves the alignment between 3D spatial features and textual semantics in latent space. In SVS, we devise a simple yet effective batch sampling and rendering strategy that can generate arbitrary views in a single feed-forward inference. Extensive experiments present our SeMv-3D's superiority over state-of-the-art performances with semantic and multi-view consistency in any view. Our code and more visual results are available at https://anonymous.4open.science/r/SeMv-3D-6425.
Abstract:Mitigating the detrimental effects of noisy labels on the training process has become increasingly critical, as obtaining entirely clean or human-annotated samples for large-scale pre-training tasks is often impractical. Nonetheless, existing noise mitigation methods often encounter limitations in practical applications due to their task-specific design, model dependency, and significant computational overhead. In this work, we exploit the properties of high-dimensional orthogonality to identify a robust and effective boundary in cone space for separating clean and noisy samples. Building on this, we propose One-step Anti-Noise (OSA), a model-agnostic noisy label mitigation paradigm that employs an estimator model and a scoring function to assess the noise level of input pairs through just one-step inference, a cost-efficient process. We empirically demonstrate the superiority of OSA, highlighting its enhanced training robustness, improved task transferability, ease of deployment, and reduced computational costs across various benchmarks, models, and tasks. Our code is released at https://github.com/leolee99/OSA.
Abstract:The development of Multimodal Large Language Models (MLLMs) has seen significant advancements. However, the quantity and quality of multimodal instruction data have emerged as significant bottlenecks in their progress. Manually creating multimodal instruction data is both time-consuming and inefficient, posing challenges in producing instructions of high complexity. Moreover, distilling instruction data from black-box commercial models (e.g., GPT-4o, GPT-4V) often results in simplistic instruction data, which constrains performance to that of these models. The challenge of curating diverse and complex instruction data remains substantial. We propose MMEvol, a novel multimodal instruction data evolution framework that combines fine-grained perception evolution, cognitive reasoning evolution, and interaction evolution. This iterative approach breaks through data quality bottlenecks to generate a complex and diverse image-text instruction dataset, thereby empowering MLLMs with enhanced capabilities. Beginning with an initial set of instructions, SEED-163K, we utilize MMEvol to systematically broadens the diversity of instruction types, integrates reasoning steps to enhance cognitive capabilities, and extracts detailed information from images to improve visual understanding and robustness. To comprehensively evaluate the effectiveness of our data, we train LLaVA-NeXT using the evolved data and conduct experiments across 13 vision-language tasks. Compared to the baseline trained with seed data, our approach achieves an average accuracy improvement of 3.1 points and reaches state-of-the-art (SOTA) performance on 9 of these tasks.
Abstract:Targeted adversarial attack, which aims to mislead a model to recognize any image as a target object by imperceptible perturbations, has become a mainstream tool for vulnerability assessment of deep neural networks (DNNs). Since existing targeted attackers only learn to attack known target classes, they cannot generalize well to unknown classes. To tackle this issue, we propose $\bf{G}$eneralized $\bf{A}$dversarial attac$\bf{KER}$ ($\bf{GAKer}$), which is able to construct adversarial examples to any target class. The core idea behind GAKer is to craft a latently infected representation during adversarial example generation. To this end, the extracted latent representations of the target object are first injected into intermediate features of an input image in an adversarial generator. Then, the generator is optimized to ensure visual consistency with the input image while being close to the target object in the feature space. Since the GAKer is class-agnostic yet model-agnostic, it can be regarded as a general tool that not only reveals the vulnerability of more DNNs but also identifies deficiencies of DNNs in a wider range of classes. Extensive experiments have demonstrated the effectiveness of our proposed method in generating adversarial examples for both known and unknown classes. Notably, compared with other generative methods, our method achieves an approximately $14.13\%$ higher attack success rate for unknown classes and an approximately $4.23\%$ higher success rate for known classes. Our code is available in https://github.com/VL-Group/GAKer.
Abstract:Although Large Visual Language Models (LVLMs) have demonstrated exceptional abilities in understanding multimodal data, they invariably suffer from hallucinations, leading to a disconnect between the generated text and the corresponding images. Almost all current visual contrastive decoding methods attempt to mitigate these hallucinations by introducing visual uncertainty information that appropriately widens the contrastive logits gap between hallucinatory and targeted ones. However, due to uncontrollable nature of the global visual uncertainty, they struggle to precisely induce the hallucinatory tokens, which severely limits their effectiveness in mitigating hallucinations and may even lead to the generation of undesired hallucinations. To tackle this issue, we conducted the theoretical analysis to promote the effectiveness of contrast decoding. Building on this insight, we introduce a novel optimization strategy named Hallucination-Induced Optimization (HIO). This strategy seeks to amplify the contrast between hallucinatory and targeted tokens relying on a fine-tuned theoretical preference model (i.e., Contrary Bradley-Terry Model), thereby facilitating efficient contrast decoding to alleviate hallucinations in LVLMs. Extensive experimental research demonstrates that our HIO strategy can effectively reduce hallucinations in LVLMs, outperforming state-of-the-art methods across various benchmarks.
Abstract:Adapting large-scale image-text pre-training models, e.g., CLIP, to the video domain represents the current state-of-the-art for text-video retrieval. The primary approaches involve transferring text-video pairs to a common embedding space and leveraging cross-modal interactions on specific entities for semantic alignment. Though effective, these paradigms entail prohibitive computational costs, leading to inefficient retrieval. To address this, we propose a simple yet effective method, Global-Local Semantic Consistent Learning (GLSCL), which capitalizes on latent shared semantics across modalities for text-video retrieval. Specifically, we introduce a parameter-free global interaction module to explore coarse-grained alignment. Then, we devise a shared local interaction module that employs several learnable queries to capture latent semantic concepts for learning fine-grained alignment. Furthermore, an Inter-Consistency Loss (ICL) is devised to accomplish the concept alignment between the visual query and corresponding textual query, and an Intra-Diversity Loss (IDL) is developed to repulse the distribution within visual (textual) queries to generate more discriminative concepts. Extensive experiments on five widely used benchmarks (i.e., MSR-VTT, MSVD, DiDeMo, LSMDC, and ActivityNet) substantiate the superior effectiveness and efficiency of the proposed method. Remarkably, our method achieves comparable performance with SOTA as well as being nearly 220 times faster in terms of computational cost. Code is available at: https://github.com/zchoi/GLSCL.
Abstract:We introduce RoScenes, the largest multi-view roadside perception dataset, which aims to shed light on the development of vision-centric Bird's Eye View (BEV) approaches for more challenging traffic scenes. The highlights of RoScenes include significantly large perception area, full scene coverage and crowded traffic. More specifically, our dataset achieves surprising 21.13M 3D annotations within 64,000 $m^2$. To relieve the expensive costs of roadside 3D labeling, we present a novel BEV-to-3D joint annotation pipeline to efficiently collect such a large volume of data. After that, we organize a comprehensive study for current BEV methods on RoScenes in terms of effectiveness and efficiency. Tested methods suffer from the vast perception area and variation of sensor layout across scenes, resulting in performance levels falling below expectations. To this end, we propose RoBEV that incorporates feature-guided position embedding for effective 2D-3D feature assignment. With its help, our method outperforms state-of-the-art by a large margin without extra computational overhead on validation set. Our dataset and devkit will be made available at https://github.com/xiaosu-zhu/RoScenes.
Abstract:Recent large-scale video datasets have facilitated the generation of diverse open-domain videos of Video Diffusion Models (VDMs). Nonetheless, the efficacy of VDMs in assimilating complex knowledge from these datasets remains constrained by their inherent scale, leading to suboptimal comprehension and synthesis of numerous actions. In this paper, we introduce EchoReel, a novel approach to augment the capability of VDMs in generating intricate actions by emulating motions from pre-existing videos, which are readily accessible from databases or online repositories. EchoReel seamlessly integrates with existing VDMs, enhancing their ability to produce realistic motions without compromising their fundamental capabilities. Specifically, the Action Prism (AP), is introduced to distill motion information from reference videos, which requires training on only a small dataset. Leveraging the knowledge from pre-trained VDMs, EchoReel incorporates new action features into VDMs through the additional layers, eliminating the need for any further fine-tuning of untrained actions. Extensive experiments demonstrate that EchoReel is not merely replicating the whole content from references, and it significantly improves the generation of realistic actions, even in situations where existing VDMs might directly fail.
Abstract:Instruction tuning represents a prevalent strategy employed by Multimodal Large Language Models (MLLMs) to align with human instructions and adapt to new tasks. Nevertheless, MLLMs encounter the challenge of adapting to users' evolving knowledge and demands. Therefore, how to retain existing skills while acquiring new knowledge needs to be investigated. In this paper, we present a comprehensive benchmark, namely Continual Instruction tuNing (CoIN), to assess existing MLLMs in the sequential instruction tuning paradigm. CoIN comprises 10 commonly used datasets spanning 8 task categories, ensuring a diverse range of instructions and tasks. Besides, the trained model is evaluated from two aspects: Instruction Following and General Knowledge, which assess the alignment with human intention and knowledge preserved for reasoning, respectively. Experiments on CoIN demonstrate that current powerful MLLMs still suffer catastrophic forgetting, and the failure in intention alignment assumes the main responsibility, instead of the knowledge forgetting. To this end, we introduce MoELoRA to MLLMs which is effective to retain the previous instruction alignment. Experimental results consistently illustrate the forgetting decreased from this method on CoIN.
Abstract:The video composition task aims to integrate specified foregrounds and backgrounds from different videos into a harmonious composite. Current approaches, predominantly trained on videos with adjusted foreground color and lighting, struggle to address deep semantic disparities beyond superficial adjustments, such as domain gaps. Therefore, we propose a training-free pipeline employing a pre-trained diffusion model imbued with semantic prior knowledge, which can process composite videos with broader semantic disparities. Specifically, we process the video frames in a cascading manner and handle each frame in two processes with the diffusion model. In the inversion process, we propose Balanced Partial Inversion to obtain generation initial points that balance reversibility and modifiability. Then, in the generation process, we further propose Inter-Frame Augmented attention to augment foreground continuity across frames. Experimental results reveal that our pipeline successfully ensures the visual harmony and inter-frame coherence of the outputs, demonstrating efficacy in managing broader semantic disparities.