Abstract:Large language models (LLMs) have achieved superior performance in powering text-based AI agents, endowing them with decision-making and reasoning abilities akin to humans. Concurrently, there is an emerging research trend focused on extending these LLM-powered AI agents into the multimodal domain. This extension enables AI agents to interpret and respond to diverse multimodal user queries, thereby handling more intricate and nuanced tasks. In this paper, we conduct a systematic review of LLM-driven multimodal agents, which we refer to as large multimodal agents ( LMAs for short). First, we introduce the essential components involved in developing LMAs and categorize the current body of research into four distinct types. Subsequently, we review the collaborative frameworks integrating multiple LMAs , enhancing collective efficacy. One of the critical challenges in this field is the diverse evaluation methods used across existing studies, hindering effective comparison among different LMAs . Therefore, we compile these evaluation methodologies and establish a comprehensive framework to bridge the gaps. This framework aims to standardize evaluations, facilitating more meaningful comparisons. Concluding our review, we highlight the extensive applications of LMAs and propose possible future research directions. Our discussion aims to provide valuable insights and guidelines for future research in this rapidly evolving field. An up-to-date resource list is available at https://github.com/jun0wanan/awesome-large-multimodal-agents.
Abstract:Existing Unbiased Scene Graph Generation (USGG) methods only focus on addressing the predicate-level imbalance that high-frequency classes dominate predictions of rare ones, while overlooking the concept-level imbalance. Actually, even if predicates themselves are balanced, there is still a significant concept-imbalance within them due to the long-tailed distribution of contexts (i.e., subject-object combinations). This concept-level imbalance poses a more pervasive and challenging issue compared to the predicate-level imbalance since subject-object pairs are inherently complex in combinations. Hence, we introduce a novel research problem: Generalized Unbiased Scene Graph Generation (G-USGG), which takes into account both predicate-level and concept-level imbalance. To the end, we propose the Multi-Concept Learning (MCL) framework, which ensures a balanced learning process across rare/ uncommon/ common concepts. MCL first quantifies the concept-level imbalance across predicates in terms of different amounts of concepts, representing as multiple concept-prototypes within the same class. It then effectively learns concept-prototypes by applying the Concept Regularization (CR) technique. Furthermore, to achieve balanced learning over different concepts, we introduce the Balanced Prototypical Memory (BPM), which guides SGG models to generate balanced representations for concept-prototypes. Extensive experiments demonstrate the remarkable efficacy of our model-agnostic strategy in enhancing the performance of benchmark models on both VG-SGG and OI-SGG datasets, leading to new state-of-the-art achievements in two key aspects: predicate-level unbiased relation recognition and concept-level compositional generability.
Abstract:Understanding human emotions is a crucial ability for intelligent robots to provide better human-robot interactions. The existing works are limited to trimmed video-level emotion classification, failing to locate the temporal window corresponding to the emotion. In this paper, we introduce a new task, named Temporal Emotion Localization in videos~(TEL), which aims to detect human emotions and localize their corresponding temporal boundaries in untrimmed videos with aligned subtitles. TEL presents three unique challenges compared to temporal action localization: 1) The emotions have extremely varied temporal dynamics; 2) The emotion cues are embedded in both appearances and complex plots; 3) The fine-grained temporal annotations are complicated and labor-intensive. To address the first two challenges, we propose a novel dilated context integrated network with a coarse-fine two-stream architecture. The coarse stream captures varied temporal dynamics by modeling multi-granularity temporal contexts. The fine stream achieves complex plots understanding by reasoning the dependency between the multi-granularity temporal contexts from the coarse stream and adaptively integrates them into fine-grained video segment features. To address the third challenge, we introduce a cross-modal consensus learning paradigm, which leverages the inherent semantic consensus between the aligned video and subtitle to achieve weakly-supervised learning. We contribute a new testing set with 3,000 manually-annotated temporal boundaries so that future research on the TEL problem can be quantitatively evaluated. Extensive experiments show the effectiveness of our approach on temporal emotion localization. The repository of this work is at https://github.com/YYJMJC/Temporal-Emotion-Localization-in-Videos.
Abstract:The problems of low light image noise and chromatic aberration is a challenging problem for tasks such as object detection, semantic segmentation, instance segmentation, etc. In this paper, we propose the algorithm for low illumination enhancement. KinD-LCE uses the light curve estimation module in the network structure to enhance the illumination map in the Retinex decomposed image, which improves the image brightness; we proposed the illumination map and reflection map fusion module to restore the restored image details and reduce the detail loss. Finally, we included a total variation loss function to eliminate noise. Our method uses the GladNet dataset as the training set, and the LOL dataset as the test set and is validated using ExDark as the dataset for downstream tasks. Extensive Experiments on the benchmarks demonstrate the advantages of our method and are close to the state-of-the-art results, which achieve a PSNR of 19.7216 and SSIM of 0.8213 in terms of metrics.
Abstract:Temporal grounding in videos aims to localize one target video segment that semantically corresponds to a given query sentence. Thanks to the semantic diversity of natural language descriptions, temporal grounding allows activity grounding beyond pre-defined classes and has received increasing attention in recent years. The semantic diversity is rooted in the principle of compositionality in linguistics, where novel semantics can be systematically described by combining known words in novel ways (compositional generalization). However, current temporal grounding datasets do not specifically test for the compositional generalizability. To systematically measure the compositional generalizability of temporal grounding models, we introduce a new Compositional Temporal Grounding task and construct two new dataset splits, i.e., Charades-CG and ActivityNet-CG. Evaluating the state-of-the-art methods on our new dataset splits, we empirically find that they fail to generalize to queries with novel combinations of seen words. To tackle this challenge, we propose a variational cross-graph reasoning framework that explicitly decomposes video and language into multiple structured hierarchies and learns fine-grained semantic correspondence among them. Experiments illustrate the superior compositional generalizability of our approach. The repository of this work is at https://github.com/YYJMJC/ Compositional-Temporal-Grounding.