Abstract:Current 3D human motion reconstruction methods from monocular videos rely on features within the current reconstruction window, leading to distortion and deformations in the human structure under local occlusions or blurriness in video frames. To estimate realistic 3D human mesh sequences based on incomplete features, we propose Temporally-alignable Probability Guided Graph Topological Modeling for 3D Human Reconstruction (ProGraph). For missing parts recovery, we exploit the explicit topological-aware probability distribution across the entire motion sequence. To restore the complete human, Graph Topological Modeling (GTM) learns the underlying topological structure, focusing on the relationships inherent in the individual parts. Next, to generate blurred motion parts, Temporal-alignable Probability Distribution (TPDist) utilizes the GTM to predict features based on distribution. This interactive mechanism facilitates motion consistency, allowing the restoration of human parts. Furthermore, Hierarchical Human Loss (HHLoss) constrains the probability distribution errors of inter-frame features during topological structure variation. Our Method achieves superior results than other SOTA methods in addressing occlusions and blurriness on 3DPW.
Abstract:Retrieval-Augmented Generation (RAG) has proven to be an effective method for mitigating hallucination issues inherent in large language models (LLMs). Previous approaches typically train retrievers based on semantic similarity, lacking optimization for RAG. More recent works have proposed aligning retrievers with the preference signals of LLMs. However, these preference signals are often difficult for dense retrievers, which typically have weaker language capabilities, to understand and learn effectively. Drawing inspiration from pedagogical theories like Guided Discovery Learning, we propose a novel framework, FiGRet (Fine-grained Guidance for Retrievers), which leverages the language capabilities of LLMs to construct examples from a more granular, information-centric perspective to guide the learning of retrievers. Specifically, our method utilizes LLMs to construct easy-to-understand examples from samples where the retriever performs poorly, focusing on three learning objectives highly relevant to the RAG scenario: relevance, comprehensiveness, and purity. These examples serve as scaffolding to ultimately align the retriever with the LLM's preferences. Furthermore, we employ a dual curriculum learning strategy and leverage the reciprocal feedback between LLM and retriever to further enhance the performance of the RAG system. A series of experiments demonstrate that our proposed framework enhances the performance of RAG systems equipped with different retrievers and is applicable to various LLMs.
Abstract:Contrastive loss is a powerful approach for representation learning, where larger batch sizes enhance performance by providing more negative samples to better distinguish between similar and dissimilar data. However, scaling batch sizes is constrained by the quadratic growth in GPU memory consumption, primarily due to the full instantiation of the similarity matrix. To address this, we propose a tile-based computation strategy that partitions the contrastive loss calculation into arbitrary small blocks, avoiding full materialization of the similarity matrix. Furthermore, we introduce a multi-level tiling strategy to leverage the hierarchical structure of distributed systems, employing ring-based communication at the GPU level to optimize synchronization and fused kernels at the CUDA core level to reduce I/O overhead. Experimental results show that the proposed method scales batch sizes to unprecedented levels. For instance, it enables contrastive training of a CLIP-ViT-L/14 model with a batch size of 4M or 12M using 8 or 32 A800 80GB without sacrificing any accuracy. Compared to SOTA memory-efficient solutions, it achieves a two-order-of-magnitude reduction in memory while maintaining comparable speed. The code will be made publicly available.
Abstract:With the rapid advancement of large language models (LLMs), aligning policy models with human preferences has become increasingly critical. Direct Preference Optimization (DPO) has emerged as a promising approach for alignment, acting as an RL-free alternative to Reinforcement Learning from Human Feedback (RLHF). Despite DPO's various advancements and inherent limitations, an in-depth review of these aspects is currently lacking in the literature. In this work, we present a comprehensive review of the challenges and opportunities in DPO, covering theoretical analyses, variants, relevant preference datasets, and applications. Specifically, we categorize recent studies on DPO based on key research questions to provide a thorough understanding of DPO's current landscape. Additionally, we propose several future research directions to offer insights on model alignment for the research community.
Abstract:Recent breakthroughs in artificial intelligence have driven a paradigm shift, where large language models (LLMs) with billions or trillions of parameters are trained on vast datasets, achieving unprecedented success across a series of language tasks. However, despite these successes, LLMs still rely on probabilistic modeling, which often captures spurious correlations rooted in linguistic patterns and social stereotypes, rather than the true causal relationships between entities and events. This limitation renders LLMs vulnerable to issues such as demographic biases, social stereotypes, and LLM hallucinations. These challenges highlight the urgent need to integrate causality into LLMs, moving beyond correlation-driven paradigms to build more reliable and ethically aligned AI systems. While many existing surveys and studies focus on utilizing prompt engineering to activate LLMs for causal knowledge or developing benchmarks to assess their causal reasoning abilities, most of these efforts rely on human intervention to activate pre-trained models. How to embed causality into the training process of LLMs and build more general and intelligent models remains unexplored. Recent research highlights that LLMs function as causal parrots, capable of reciting causal knowledge without truly understanding or applying it. These prompt-based methods are still limited to human interventional improvements. This survey aims to address this gap by exploring how causality can enhance LLMs at every stage of their lifecycle-from token embedding learning and foundation model training to fine-tuning, alignment, inference, and evaluation-paving the way for more interpretable, reliable, and causally-informed models. Additionally, we further outline six promising future directions to advance LLM development, enhance their causal reasoning capabilities, and address the current limitations these models face.
Abstract:Model merging has gained significant attention as a cost-effective approach to integrate multiple single-task fine-tuned models into a unified one that can perform well on multiple tasks. However, existing model merging techniques primarily focus on resolving conflicts between task-specific models, they often overlook potential security threats, particularly the risk of backdoor attacks in the open-source model ecosystem. In this paper, we first investigate the vulnerabilities of existing model merging methods to backdoor attacks, identifying two critical challenges: backdoor succession and backdoor transfer. To address these issues, we propose a novel Defense-Aware Merging (DAM) approach that simultaneously mitigates task interference and backdoor vulnerabilities. Specifically, DAM employs a meta-learning-based optimization method with dual masks to identify a shared and safety-aware subspace for model merging. These masks are alternately optimized: the Task-Shared mask identifies common beneficial parameters across tasks, aiming to preserve task-specific knowledge while reducing interference, while the Backdoor-Detection mask isolates potentially harmful parameters to neutralize security threats. This dual-mask design allows us to carefully balance the preservation of useful knowledge and the removal of potential vulnerabilities. Compared to existing merging methods, DAM achieves a more favorable balance between performance and security, reducing the attack success rate by 2-10 percentage points while sacrificing only about 1% in accuracy. Furthermore, DAM exhibits robust performance and broad applicability across various types of backdoor attacks and the number of compromised models involved in the merging process. We will release the codes and models soon.
Abstract:Current automatic deep learning (i.e., AutoDL) frameworks rely on training feedback from actual runs, which often hinder their ability to provide quick and clear performance predictions for selecting suitable DL systems. To address this issue, we propose EfficientDL, an innovative deep learning board designed for automatic performance prediction and component recommendation. EfficientDL can quickly and precisely recommend twenty-seven system components and predict the performance of DL models without requiring any training feedback. The magic of no training feedback comes from our proposed comprehensive, multi-dimensional, fine-grained system component dataset, which enables us to develop a static performance prediction model and comprehensive optimized component recommendation algorithm (i.e., {\alpha}\b{eta}-BO search), removing the dependency on actually running parameterized models during the traditional optimization search process. The simplicity and power of EfficientDL stem from its compatibility with most DL models. For example, EfficientDL operates seamlessly with mainstream models such as ResNet50, MobileNetV3, EfficientNet-B0, MaxViT-T, Swin-B, and DaViT-T, bringing competitive performance improvements. Besides, experimental results on the CIFAR-10 dataset reveal that EfficientDL outperforms existing AutoML tools in both accuracy and efficiency (approximately 20 times faster along with 1.31% Top-1 accuracy improvement than the cutting-edge methods). Source code, pretrained models, and datasets are available at https://github.com/OpenSELab/EfficientDL.
Abstract:Recent advancements in building domain-specific large language models (LLMs) have shown remarkable success, especially in tasks requiring reasoning abilities like logical inference over complex relationships and multi-step problem solving. However, creating a powerful all-in-one LLM remains challenging due to the need for proprietary data and vast computational resources. As a resource-friendly alternative, we explore the potential of merging multiple expert models into a single LLM. Existing studies on model merging mainly focus on generalist LLMs instead of domain experts, or the LLMs under the same architecture and size. In this work, we propose an unconstrained model merging framework that accommodates both homogeneous and heterogeneous model architectures with a focus on reasoning tasks. A fine-grained layer-wise weight merging strategy is designed for homogeneous models merging, while heterogeneous model merging is built upon the probabilistic distribution knowledge derived from instruction-response fine-tuning data. Across 7 benchmarks and 9 reasoning-optimized LLMs, we reveal key findings that combinatorial reasoning emerges from merging which surpasses simple additive effects. We propose that unconstrained model merging could serve as a foundation for decentralized LLMs, marking a notable progression from the existing centralized LLM framework. This evolution could enhance wider participation and stimulate additional advancement in the field of artificial intelligence, effectively addressing the constraints posed by centralized models.
Abstract:Large language models (LLMs) have demonstrated remarkable capabilities in generating high-quality texts across diverse domains. However, the potential misuse of LLMs has raised significant concerns, underscoring the urgent need for reliable detection of LLM-generated texts. Conventional training-based detectors often struggle with generalization, particularly in cross-domain and cross-model scenarios. In contrast, training-free methods, which focus on inherent discrepancies through carefully designed statistical features, offer improved generalization and interpretability. Despite this, existing training-free detection methods typically rely on global text sequence statistics, neglecting the modeling of local discriminative features, thereby limiting their detection efficacy. In this work, we introduce a novel training-free detector, termed \textbf{Lastde} that synergizes local and global statistics for enhanced detection. For the first time, we introduce time series analysis to LLM-generated text detection, capturing the temporal dynamics of token probability sequences. By integrating these local statistics with global ones, our detector reveals significant disparities between human and LLM-generated texts. We also propose an efficient alternative, \textbf{Lastde++} to enable real-time detection. Extensive experiments on six datasets involving cross-domain, cross-model, and cross-lingual detection scenarios, under both white-box and black-box settings, demonstrated that our method consistently achieves state-of-the-art performance. Furthermore, our approach exhibits greater robustness against paraphrasing attacks compared to existing baseline methods.
Abstract:The emergence of diverse generative vision models has recently enabled the synthesis of visually realistic images, underscoring the critical need for effectively detecting these generated images from real photos. Despite advances in this field, existing detection approaches often struggle to accurately identify synthesized images generated by different generative models. In this work, we introduce a novel and generalizable detection framework termed HyperDet, which innovatively captures and integrates shared knowledge from a collection of functionally distinct and lightweight expert detectors. HyperDet leverages a large pretrained vision model to extract general detection features while simultaneously capturing and enhancing task-specific features. To achieve this, HyperDet first groups SRM filters into five distinct groups to efficiently capture varying levels of pixel artifacts based on their different functionality and complexity. Then, HyperDet utilizes a hypernetwork to generate LoRA model weights with distinct embedding parameters. Finally, we merge the LoRA networks to form an efficient model ensemble. Also, we propose a novel objective function that balances the pixel and semantic artifacts effectively. Extensive experiments on the UnivFD and Fake2M datasets demonstrate the effectiveness of our approach, achieving state-of-the-art performance. Moreover, our work paves a new way to establish generalizable domain-specific fake image detectors based on pretrained large vision models.