Abstract:Large Language Models (LLMs) have demonstrated strong performance across various reasoning tasks, yet building a single model that consistently excels across all domains remains challenging. This paper addresses this problem by exploring strategies to integrate multiple domain-specialized models into an efficient pivot model.We propose two fusion strategies to combine the strengths of multiple LLMs: (1) a pairwise, multi-step fusion approach that sequentially distills each source model into the pivot model, followed by a weight merging step to integrate the distilled models into the final model. This method achieves strong performance but requires substantial training effort; and (2) a unified fusion approach that aggregates all source models' outputs simultaneously.To improve the fusion process, we introduce a novel Rate-Skewness Adaptive Fusion (RSAF) technique, which dynamically adjusts top-K ratios during parameter merging for enhanced flexibility and stability.Furthermore, we propose an uncertainty-based weighting method for the unified approach, which dynamically balances the contributions of source models and outperforms other logits/distribution ensemble methods.We achieved accuracy improvements of 9.27%, 8.80%, and 8.89% on the GSM8K, MATH, and HumanEval tasks, respectively.
Abstract:Multidomain crowd counting aims to learn a general model for multiple diverse datasets. However, deep networks prefer modeling distributions of the dominant domains instead of all domains, which is known as domain bias. In this study, we propose a simple-yet-effective Modulating Domain-specific Knowledge Network (MDKNet) to handle the domain bias issue in multidomain crowd counting. MDKNet is achieved by employing the idea of `modulating', enabling deep network balancing and modeling different distributions of diverse datasets with little bias. Specifically, we propose an Instance-specific Batch Normalization (IsBN) module, which serves as a base modulator to refine the information flow to be adaptive to domain distributions. To precisely modulating the domain-specific information, the Domain-guided Virtual Classifier (DVC) is then introduced to learn a domain-separable latent space. This space is employed as an input guidance for the IsBN modulator, such that the mixture distributions of multiple datasets can be well treated. Extensive experiments performed on popular benchmarks, including Shanghai-tech A/B, QNRF and NWPU, validate the superiority of MDKNet in tackling multidomain crowd counting and the effectiveness for multidomain learning. Code is available at \url{https://github.com/csguomy/MDKNet}.
Abstract:Crowd counting has achieved significant progress by training regressors to predict instance positions. In heavily crowded scenarios, however, regressors are challenged by uncontrollable annotation variance, which causes density map bias and context information inaccuracy. In this study, we propose mutual prompt learning (mPrompt), which leverages a regressor and a segmenter as guidance for each other, solving bias and inaccuracy caused by annotation variance while distinguishing foreground from background. In specific, mPrompt leverages point annotations to tune the segmenter and predict pseudo head masks in a way of point prompt learning. It then uses the predicted segmentation masks, which serve as spatial constraint, to rectify biased point annotations as context prompt learning. mPrompt defines a way of mutual information maximization from prompt learning, mitigating the impact of annotation variance while improving model accuracy. Experiments show that mPrompt significantly reduces the Mean Average Error (MAE), demonstrating the potential to be general framework for down-stream vision tasks.
Abstract:In recent years, crowd counting has become an important issue in computer vision. In most methods, the density maps are generated by convolving with a Gaussian kernel from the ground-truth dot maps which are marked around the center of human heads. Due to the fixed geometric structures in CNNs and indistinct head-scale information, the head features are obtained incompletely. Deformable convolution is proposed to exploit the scale-adaptive capabilities for CNN features in the heads. By learning the coordinate offsets of the sampling points, it is tractable to improve the ability to adjust the receptive field. However, the heads are not uniformly covered by the sampling points in the deformable convolution, resulting in loss of head information. To handle the non-uniformed sampling, an improved Normed-Deformable Convolution (\textit{i.e.,}NDConv) implemented by Normed-Deformable loss (\textit{i.e.,}NDloss) is proposed in this paper. The offsets of the sampling points which are constrained by NDloss tend to be more even. Then, the features in the heads are obtained more completely, leading to better performance. Especially, the proposed NDConv is a light-weight module which shares similar computation burden with Deformable Convolution. In the extensive experiments, our method outperforms state-of-the-art methods on ShanghaiTech A, ShanghaiTech B, UCF\_QNRF, and UCF\_CC\_50 dataset, achieving 61.4, 7.8, 91.2, and 167.2 MAE, respectively. The code is available at https://github.com/bingshuangzhuzi/NDConv
Abstract:In crowd counting, due to the problem of laborious labelling, it is perceived intractability of collecting a new large-scale dataset which has plentiful images with large diversity in density, scene, etc. Thus, for learning a general model, training with data from multiple different datasets might be a remedy and be of great value. In this paper, we resort to the multi-domain joint learning and propose a simple but effective Domain-specific Knowledge Propagating Network (DKPNet)1 for unbiasedly learning the knowledge from multiple diverse data domains at the same time. It is mainly achieved by proposing the novel Variational Attention(VA) technique for explicitly modeling the attention distributions for different domains. And as an extension to VA, Intrinsic Variational Attention(InVA) is proposed to handle the problems of over-lapped domains and sub-domains. Extensive experiments have been conducted to validate the superiority of our DKPNet over several popular datasets, including ShanghaiTech A/B, UCF-QNRF and NWPU.
Abstract:Crowd counting is critical for numerous video surveillance scenarios. One of the main issues in this task is how to handle the dramatic scale variations of pedestrians caused by the perspective effect. To address this issue, this paper proposes a novel convolution neural network-based crowd counting method, termed Perspective-guided Fractional-Dilation Network (PFDNet). By modeling the continuous scale variations, the proposed PFDNet is able to select the proper fractional dilation kernels for adapting to different spatial locations. It significantly improves the flexibility of the state-of-the-arts that only consider the discrete representative scales. In addition, by avoiding the multi-scale or multi-column architecture that used in other methods, it is computationally more efficient. In practice, the proposed PFDNet is constructed by stacking multiple Perspective-guided Fractional-Dilation Convolutions (PFC) on a VGG16-BN backbone. By introducing a novel generalized dilation convolution operation, the PFC can handle fractional dilation ratios in the spatial domain under the guidance of perspective annotations, achieving continuous scales modeling of pedestrians. To deal with the problem of unavailable perspective information in some cases, we further introduce an effective perspective estimation branch to the proposed PFDNet, which can be trained in either supervised or weakly-supervised setting once the branch has been pre-trained. Extensive experiments show that the proposed PFDNet outperforms state-of-the-art methods on ShanghaiTech A, ShanghaiTech B, WorldExpo'10, UCF-QNRF, UCF_CC_50 and TRANCOS dataset, achieving MAE 53.8, 6.5, 6.8, 84.3, 205.8, and 3.06 respectively.
Abstract:In this paper, we propose a novel perspective-guided convolution (PGC) for convolutional neural network (CNN) based crowd counting (i.e. PGCNet), which aims to overcome the dramatic intra-scene scale variations of people due to the perspective effect. While most state-of-the-arts adopt multi-scale or multi-column architectures to address such issue, they generally fail in modeling continuous scale variations since only discrete representative scales are considered. PGCNet, on the other hand, utilizes perspective information to guide the spatially variant smoothing of feature maps before feeding them to the successive convolutions. An effective perspective estimation branch is also introduced to PGCNet, which can be trained in either supervised setting or weakly-supervised setting when the branch has been pre-trained. Our PGCNet is single-column with moderate increase in computation, and extensive experimental results on four benchmark datasets show the improvements of our method against the state-of-the-arts. Additionally, we also introduce Crowd Surveillance, a large scale dataset for crowd counting that contains 13,000+ high-resolution images with challenging scenarios.
Abstract:Deep convolutional networks (CNNs) have exhibited their potential in image inpainting for producing plausible results. However, in most existing methods, e.g., context encoder, the missing parts are predicted by propagating the surrounding convolutional features through a fully connected layer, which intends to produce semantically plausible but blurry result. In this paper, we introduce a special shift-connection layer to the U-Net architecture, namely Shift-Net, for filling in missing regions of any shape with sharp structures and fine-detailed textures. To this end, the encoder feature of the known region is shifted to serve as an estimation of the missing parts. A guidance loss is introduced on decoder feature to minimize the distance between the decoder feature after fully connected layer and the ground-truth encoder feature of the missing parts. With such constraint, the decoder feature in missing region can be used to guide the shift of encoder feature in known region. An end-to-end learning algorithm is further developed to train the Shift-Net. Experiments on the Paris StreetView and Places datasets demonstrate the efficiency and effectiveness of our Shift-Net in producing sharper, fine-detailed, and visually plausible results. The codes and pre-trained models are available at https://github.com/Zhaoyi-Yan/Shift-Net.