Abstract:Automatic adversarial prompt generation provides remarkable success in jailbreaking safely-aligned large language models (LLMs). Existing gradient-based attacks, while demonstrating outstanding performance in jailbreaking white-box LLMs, often generate garbled adversarial prompts with chaotic appearance. These adversarial prompts are difficult to transfer to other LLMs, hindering their performance in attacking unknown victim models. In this paper, for the first time, we delve into the semantic meaning embedded in garbled adversarial prompts and propose a novel method that "translates" them into coherent and human-readable natural language adversarial prompts. In this way, we can effectively uncover the semantic information that triggers vulnerabilities of the model and unambiguously transfer it to the victim model, without overlooking the adversarial information hidden in the garbled text, to enhance jailbreak attacks. It also offers a new approach to discovering effective designs for jailbreak prompts, advancing the understanding of jailbreak attacks. Experimental results demonstrate that our method significantly improves the success rate of jailbreak attacks against various safety-aligned LLMs and outperforms state-of-the-arts by large margins. With at most 10 queries, our method achieves an average attack success rate of 81.8% in attacking 7 commercial closed-source LLMs, including GPT and Claude-3 series, on HarmBench. Our method also achieves over 90% attack success rates against Llama-2-Chat models on AdvBench, despite their outstanding resistance to jailbreak attacks. Code at: https://github.com/qizhangli/Adversarial-Prompt-Translator.
Abstract:Wide-angle lens distortion in portrait photography presents a significant challenge for capturing photo-realistic and aesthetically pleasing images. Such distortions are especially noticeable in facial regions. In this work, we propose encapsulating the generative face prior as a guided natural manifold to facilitate the correction of facial regions. Moreover, a notable central symmetry relationship exists in the non-face background, yet it has not been explored in the correction process. This geometry prior motivates us to introduce a novel constraint to explicitly enforce symmetry throughout the correction process, thereby contributing to a more visually appealing and natural correction in the non-face region. Experiments demonstrate that our approach outperforms previous methods by a large margin, excelling not only in quantitative measures such as line straightness and shape consistency metrics but also in terms of perceptual visual quality. All the code and models are available at https://github.com/Dev-Mrha/DualPriorsCorrection.
Abstract:As large-scale models evolve, language instructions are increasingly utilized in multi-modal tasks. Due to human language habits, these instructions often contain ambiguities in real-world scenarios, necessitating the integration of visual context or common sense for accurate interpretation. However, even highly intelligent large models exhibit significant performance limitations on ambiguous instructions, where weak reasoning abilities of disambiguation can lead to catastrophic errors. To address this issue, this paper proposes Visual-O1, a multi-modal multi-turn chain-of-thought reasoning framework. It simulates human multi-modal multi-turn reasoning, providing instantial experience for highly intelligent models or empirical experience for generally intelligent models to understand ambiguous instructions. Unlike traditional methods that require models to possess high intelligence to understand long texts or perform lengthy complex reasoning, our framework does not significantly increase computational overhead and is more general and effective, even for generally intelligent models. Experiments show that our method not only significantly enhances the performance of models of different intelligence levels on ambiguous instructions but also improves their performance on general datasets. Our work highlights the potential of artificial intelligence to work like humans in real-world scenarios with uncertainty and ambiguity. We will release our data and code.
Abstract:Artistic typography is a technique to visualize the meaning of input character in an imaginable and readable manner. With powerful text-to-image diffusion models, existing methods directly design the overall geometry and texture of input character, making it challenging to ensure both creativity and legibility. In this paper, we introduce a dual-branch and training-free method, namely VitaGlyph, enabling flexible artistic typography along with controllable geometry change to maintain the readability. The key insight of VitaGlyph is to treat input character as a scene composed of Subject and Surrounding, followed by rendering them under varying degrees of geometry transformation. The subject flexibly expresses the essential concept of input character, while the surrounding enriches relevant background without altering the shape. Specifically, we implement VitaGlyph through a three-phase framework: (i) Knowledge Acquisition leverages large language models to design text descriptions of subject and surrounding. (ii) Regional decomposition detects the part that most matches the subject description and divides input glyph image into subject and surrounding regions. (iii) Typography Stylization firstly refines the structure of subject region via Semantic Typography, and then separately renders the textures of Subject and Surrounding regions through Controllable Compositional Generation. Experimental results demonstrate that VitaGlyph not only achieves better artistry and readability, but also manages to depict multiple customize concepts, facilitating more creative and pleasing artistic typography generation. Our code will be made publicly at https://github.com/Carlofkl/VitaGlyph.
Abstract:For single image defocus deblurring, acquiring well-aligned training pairs (or training triplets), i.e., a defocus blurry image, an all-in-focus sharp image (and a defocus blur map), is an intricate task for the development of deblurring models. Existing image defocus deblurring methods typically rely on training data collected by specialized imaging equipment, presupposing that these pairs or triplets are perfectly aligned. However, in practical scenarios involving the collection of real-world data, direct acquisition of training triplets is infeasible, and training pairs inevitably encounter spatial misalignment issues. In this work, we introduce a reblurring-guided learning framework for single image defocus deblurring, enabling the learning of a deblurring network even with misaligned training pairs. Specifically, we first propose a baseline defocus deblurring network that utilizes spatially varying defocus blur map as degradation prior to enhance the deblurring performance. Then, to effectively learn the baseline defocus deblurring network with misaligned training pairs, our reblurring module ensures spatial consistency between the deblurred image, the reblurred image and the input blurry image by reconstructing spatially variant isotropic blur kernels. Moreover, the spatially variant blur derived from the reblurring module can serve as pseudo supervision for defocus blur map during training, interestingly transforming training pairs into training triplets. Additionally, we have collected a new dataset specifically for single image defocus deblurring (SDD) with typical misalignments, which not only substantiates our proposed method but also serves as a benchmark for future research.
Abstract:We introduce LPT++, a comprehensive framework for long-tailed classification that combines parameter-efficient fine-tuning (PEFT) with a learnable model ensemble. LPT++ enhances frozen Vision Transformers (ViTs) through the integration of three core components. The first is a universal long-tailed adaptation module, which aggregates long-tailed prompts and visual adapters to adapt the pretrained model to the target domain, meanwhile improving its discriminative ability. The second is the mixture of long-tailed experts framework with a mixture-of-experts (MoE) scorer, which adaptively calculates reweighting coefficients for confidence scores from both visual-only and visual-language (VL) model experts to generate more accurate predictions. Finally, LPT++ employs a three-phase training framework, wherein each critical module is learned separately, resulting in a stable and effective long-tailed classification training paradigm. Besides, we also propose the simple version of LPT++ namely LPT, which only integrates visual-only pretrained ViT and long-tailed prompts to formulate a single model method. LPT can clearly illustrate how long-tailed prompts works meanwhile achieving comparable performance without VL pretrained models. Experiments show that, with only ~1% extra trainable parameters, LPT++ achieves comparable accuracy against all the counterparts.
Abstract:Text-driven 3D scene generation has seen significant advancements recently. However, most existing methods generate single-view images using generative models and then stitch them together in 3D space. This independent generation for each view often results in spatial inconsistency and implausibility in the 3D scenes. To address this challenge, we proposed a novel text-driven 3D-consistent scene generation model: SceneDreamer360. Our proposed method leverages a text-driven panoramic image generation model as a prior for 3D scene generation and employs 3D Gaussian Splatting (3DGS) to ensure consistency across multi-view panoramic images. Specifically, SceneDreamer360 enhances the fine-tuned Panfusion generator with a three-stage panoramic enhancement, enabling the generation of high-resolution, detail-rich panoramic images. During the 3D scene construction, a novel point cloud fusion initialization method is used, producing higher quality and spatially consistent point clouds. Our extensive experiments demonstrate that compared to other methods, SceneDreamer360 with its panoramic image generation and 3DGS can produce higher quality, spatially consistent, and visually appealing 3D scenes from any text prompt. Our codes are available at \url{https://github.com/liwrui/SceneDreamer360}.
Abstract:Modern consumer cameras commonly employ the rolling shutter (RS) imaging mechanism, via which images are captured by scanning scenes row-by-row, resulting in RS distortion for dynamic scenes. To correct RS distortion, existing methods adopt a fully supervised learning manner that requires high framerate global shutter (GS) images as ground-truth for supervision. In this paper, we propose an enhanced Self-supervised learning framework for Dual reversed RS distortion Correction (SelfDRSC++). Firstly, we introduce a lightweight DRSC network that incorporates a bidirectional correlation matching block to refine the joint optimization of optical flows and corrected RS features, thereby improving correction performance while reducing network parameters. Subsequently, to effectively train the DRSC network, we propose a self-supervised learning strategy that ensures cycle consistency between input and reconstructed dual reversed RS images. The RS reconstruction in SelfDRSC++ can be interestingly formulated as a specialized instance of video frame interpolation, where each row in reconstructed RS images is interpolated from predicted GS images by utilizing RS distortion time maps. By achieving superior performance while simplifying the training process, SelfDRSC++ enables feasible one-stage self-supervised training. Additionally, besides start and end RS scanning time, SelfDRSC++ allows supervision of GS images at arbitrary intermediate scanning times, thus enabling the learned DRSC network to generate high framerate GS videos. The code and trained models are available at \url{https://github.com/shangwei5/SelfDRSC_plusplus}.
Abstract:With the advancement of generative models, the synthesis of different sensory elements such as music, visuals, and speech has achieved significant realism. However, the approach to generate multi-sensory outputs has not been fully explored, limiting the application on high-value scenarios such as of directing a film. Developing a movie director agent faces two major challenges: (1) Lack of parallelism and online scheduling with production steps: In the production of multi-sensory films, there are complex dependencies between different sensory elements, and the production time for each element varies. (2) Diverse needs and clear communication demands with users: Users often cannot clearly express their needs until they see a draft, which requires human-computer interaction and iteration to continually adjust and optimize the film content based on user feedback. To address these issues, we introduce AutoDirector, an interactive multi-sensory composition framework that supports long shots, special effects, music scoring, dubbing, and lip-syncing. This framework improves the efficiency of multi-sensory film production through automatic scheduling and supports the modification and improvement of interactive tasks to meet user needs. AutoDirector not only expands the application scope of human-machine collaboration but also demonstrates the potential of AI in collaborating with humans in the role of a film director to complete multi-sensory films.
Abstract:Animation line inbetweening is a crucial step in animation production aimed at enhancing animation fluidity by predicting intermediate line arts between two key frames. However, existing methods face challenges in effectively addressing sparse pixels and significant motion in line art key frames. In literature, Chamfer Distance (CD) is commonly adopted for evaluating inbetweening performance. Despite achieving favorable CD values, existing methods often generate interpolated frames with line disconnections, especially for scenarios involving large motion. Motivated by this observation, we propose a simple yet effective interpolation method for animation line inbetweening that adopts thin-plate spline-based transformation to estimate coarse motion more accurately by modeling the keypoint correspondence between two key frames, particularly for large motion scenarios. Building upon the coarse estimation, a motion refine module is employed to further enhance motion details before final frame interpolation using a simple UNet model. Furthermore, to more accurately assess the performance of animation line inbetweening, we refine the CD metric and introduce a novel metric termed Weighted Chamfer Distance, which demonstrates a higher consistency with visual perception quality. Additionally, we incorporate Earth Mover's Distance and conduct user study to provide a more comprehensive evaluation. Our method outperforms existing approaches by delivering high-quality interpolation results with enhanced fluidity. The code is available at \url{https://github.com/Tian-one/tps-inbetween}.