Abstract:The strength of multimodal learning lies in its ability to integrate information from various sources, providing rich and comprehensive insights. However, in real-world scenarios, multi-modal systems often face the challenge of dynamic modality contributions, the dominance of different modalities may change with the environments, leading to suboptimal performance in multimodal learning. Current methods mainly enhance weak modalities to balance multimodal representation bias, which inevitably optimizes from a partialmodality perspective, easily leading to performance descending for dominant modalities. To address this problem, we propose an Asymmetric Reinforcing method against Multimodal representation bias (ARM). Our ARM dynamically reinforces the weak modalities while maintaining the ability to represent dominant modalities through conditional mutual information. Moreover, we provide an in-depth analysis that optimizing certain modalities could cause information loss and prevent leveraging the full advantages of multimodal data. By exploring the dominance and narrowing the contribution gaps between modalities, we have significantly improved the performance of multimodal learning, making notable progress in mitigating imbalanced multimodal learning.
Abstract:The dynamic imbalance of the fore-background is a major challenge in video object counting, which is usually caused by the sparsity of foreground objects. This often leads to severe under- and over-prediction problems and has been less studied in existing works. To tackle this issue in video object counting, we propose a density-embedded Efficient Masked Autoencoder Counting (E-MAC) framework in this paper. To effectively capture the dynamic variations across frames, we utilize an optical flow-based temporal collaborative fusion that aligns features to derive multi-frame density residuals. The counting accuracy of the current frame is boosted by harnessing the information from adjacent frames. More importantly, to empower the representation ability of dynamic foreground objects for intra-frame, we first take the density map as an auxiliary modality to perform $\mathtt{D}$ensity-$\mathtt{E}$mbedded $\mathtt{M}$asked m$\mathtt{O}$deling ($\mathtt{DEMO}$) for multimodal self-representation learning to regress density map. However, as $\mathtt{DEMO}$ contributes effective cross-modal regression guidance, it also brings in redundant background information and hard to focus on foreground regions. To handle this dilemma, we further propose an efficient spatial adaptive masking derived from density maps to boost efficiency. In addition, considering most existing datasets are limited to human-centric scenarios, we first propose a large video bird counting dataset $\textit{DroneBird}$, in natural scenarios for migratory bird protection. Extensive experiments on three crowd datasets and our $\textit{DroneBird}$ validate our superiority against the counterparts.
Abstract:Infrared and visible image fusion aim to integrate modality strengths for visually enhanced, informative images. Visible imaging in real-world scenarios is susceptible to dynamic environmental brightness fluctuations, leading to texture degradation. Existing fusion methods lack robustness against such brightness perturbations, significantly compromising the visual fidelity of the fused imagery. To address this challenge, we propose the Brightness Adaptive multimodal dynamic fusion framework (BA-Fusion), which achieves robust image fusion despite dynamic brightness fluctuations. Specifically, we introduce a Brightness Adaptive Gate (BAG) module, which is designed to dynamically select features from brightness-related channels for normalization, while preserving brightness-independent structural information within the source images. Furthermore, we propose a brightness consistency loss function to optimize the BAG module. The entire framework is tuned via alternating training strategies. Extensive experiments validate that our method surpasses state-of-the-art methods in preserving multi-modal image information and visual fidelity, while exhibiting remarkable robustness across varying brightness levels. Our code is available: https://github.com/SunYM2020/BA-Fusion.
Abstract:Image fusion aims to integrate complementary information from multiple input images acquired through various sources to synthesize a new fused image. Existing methods usually employ distinct constraint designs tailored to specific scenes, forming fixed fusion paradigms. However, this data-driven fusion approach is challenging to deploy in varying scenarios, especially in rapidly changing environments. To address this issue, we propose a conditional controllable fusion (CCF) framework for general image fusion tasks without specific training. Due to the dynamic differences of different samples, our CCF employs specific fusion constraints for each individual in practice. Given the powerful generative capabilities of the denoising diffusion model, we first inject the specific constraints into the pre-trained DDPM as adaptive fusion conditions. The appropriate conditions are dynamically selected to ensure the fusion process remains responsive to the specific requirements in each reverse diffusion stage. Thus, CCF enables conditionally calibrating the fused images step by step. Extensive experiments validate our effectiveness in general fusion tasks across diverse scenarios against the competing methods without additional training.
Abstract:Modern consumer cameras commonly employ the rolling shutter (RS) imaging mechanism, via which images are captured by scanning scenes row-by-row, resulting in RS distortion for dynamic scenes. To correct RS distortion, existing methods adopt a fully supervised learning manner that requires high framerate global shutter (GS) images as ground-truth for supervision. In this paper, we propose an enhanced Self-supervised learning framework for Dual reversed RS distortion Correction (SelfDRSC++). Firstly, we introduce a lightweight DRSC network that incorporates a bidirectional correlation matching block to refine the joint optimization of optical flows and corrected RS features, thereby improving correction performance while reducing network parameters. Subsequently, to effectively train the DRSC network, we propose a self-supervised learning strategy that ensures cycle consistency between input and reconstructed dual reversed RS images. The RS reconstruction in SelfDRSC++ can be interestingly formulated as a specialized instance of video frame interpolation, where each row in reconstructed RS images is interpolated from predicted GS images by utilizing RS distortion time maps. By achieving superior performance while simplifying the training process, SelfDRSC++ enables feasible one-stage self-supervised training. Additionally, besides start and end RS scanning time, SelfDRSC++ allows supervision of GS images at arbitrary intermediate scanning times, thus enabling the learned DRSC network to generate high framerate GS videos. The code and trained models are available at \url{https://github.com/shangwei5/SelfDRSC_plusplus}.
Abstract:In recent years, the integration of prediction and planning through neural networks has received substantial attention. Despite extensive studies on it, there is a noticeable gap in understanding the operation of such models within a closed-loop planning setting. To bridge this gap, we propose a novel closed-loop planning framework compatible with neural networks engaged in joint prediction and planning. The framework contains two running modes, namely planning and safety monitoring, wherein the neural network performs Motion Prediction and Planning (MPP) and Conditional Motion Prediction (CMP) correspondingly without altering architecture. We evaluate the efficacy of our framework using the nuPlan dataset and its simulator, conducting closed-loop experiments across diverse scenarios. The results demonstrate that the proposed framework ensures the feasibility and local stability of the planning process while maintaining safety with CMP safety monitoring. Compared to other learning-based methods, our approach achieves substantial improvement.
Abstract:Tiny object detection is one of the key challenges in the field of object detection. The performance of most generic detectors dramatically decreases in tiny object detection tasks. The main challenge lies in extracting effective features of tiny objects. Existing methods usually perform generation-based feature enhancement, which is seriously affected by spurious textures and artifacts, making it difficult to make the tiny-object-specific features visible and clear for detection. To address this issue, we propose a self-reconstructed tiny object detection (SR-TOD) framework. We for the first time introduce a self-reconstruction mechanism in the detection model, and discover the strong correlation between it and the tiny objects. Specifically, we impose a reconstruction head in-between the neck of a detector, constructing a difference map of the reconstructed image and the input, which shows high sensitivity to tiny objects. This inspires us to enhance the weak representations of tiny objects under the guidance of the difference maps. Thus, improving the visibility of tiny objects for the detectors. Building on this, we further develop a Difference Map Guided Feature Enhancement (DGFE) module to make the tiny feature representation more clear. In addition, we further propose a new multi-instance anti-UAV dataset, which is called DroneSwarms dataset and contains a large number of tiny drones with the smallest average size to date. Extensive experiments on the DroneSwarms dataset and other datasets demonstrate the effectiveness of the proposed method. The code and dataset will be publicly available.
Abstract:In this paper, we present a simple yet effective contrastive knowledge distillation approach, which can be formulated as a sample-wise alignment problem with intra- and inter-sample constraints. Unlike traditional knowledge distillation methods that concentrate on maximizing feature similarities or preserving class-wise semantic correlations between teacher and student features, our method attempts to recover the "dark knowledge" by aligning sample-wise teacher and student logits. Specifically, our method first minimizes logit differences within the same sample by considering their numerical values, thus preserving intra-sample similarities. Next, we bridge semantic disparities by leveraging dissimilarities across different samples. Note that constraints on intra-sample similarities and inter-sample dissimilarities can be efficiently and effectively reformulated into a contrastive learning framework with newly designed positive and negative pairs. The positive pair consists of the teacher's and student's logits derived from an identical sample, while the negative pairs are formed by using logits from different samples. With this formulation, our method benefits from the simplicity and efficiency of contrastive learning through the optimization of InfoNCE, yielding a run-time complexity that is far less than $O(n^2)$, where $n$ represents the total number of training samples. Furthermore, our method can eliminate the need for hyperparameter tuning, particularly related to temperature parameters and large batch sizes. We conduct comprehensive experiments on three datasets including CIFAR-100, ImageNet-1K, and MS COCO. Experimental results clearly confirm the effectiveness of the proposed method on both image classification and object detection tasks. Our source codes will be publicly available at https://github.com/wencheng-zhu/CKD.
Abstract:Recently, pre-trained vision-language models (e.g., CLIP) have shown great potential in few-shot learning and attracted a lot of research interest. Although efforts have been made to improve few-shot ability of CLIP, key factors on the effectiveness of existing methods have not been well studied, limiting further exploration of CLIP's potential in few-shot learning. In this paper, we first introduce a unified formulation to analyze CLIP-based few-shot learning methods from a perspective of logit bias, which encourages us to learn an effective logit bias for further improving performance of CLIP-based few-shot learning methods. To this end, we disassemble three key components involved in computation of logit bias (i.e., logit features, logit predictor, and logit fusion) and empirically analyze the effect on performance of few-shot classification. Based on analysis of key components, this paper proposes a novel AMU-Tuning method to learn effective logit bias for CLIP-based few-shot classification. Specifically, our AMU-Tuning predicts logit bias by exploiting the appropriate $\underline{\textbf{A}}$uxiliary features, which are fed into an efficient feature-initialized linear classifier with $\underline{\textbf{M}}$ulti-branch training. Finally, an $\underline{\textbf{U}}$ncertainty-based fusion is developed to incorporate logit bias into CLIP for few-shot classification. The experiments are conducted on several widely used benchmarks, and the results show AMU-Tuning clearly outperforms its counterparts while achieving state-of-the-art performance of CLIP-based few-shot learning without bells and whistles.
Abstract:General image fusion aims at integrating important information from multi-source images. However, due to the significant cross-task gap, the respective fusion mechanism varies considerably in practice, resulting in limited performance across subtasks. To handle this problem, we propose a novel task-customized mixture of adapters (TC-MoA) for general image fusion, adaptively prompting various fusion tasks in a unified model. We borrow the insight from the mixture of experts (MoE), taking the experts as efficient tuning adapters to prompt a pre-trained foundation model. These adapters are shared across different tasks and constrained by mutual information regularization, ensuring compatibility with different tasks while complementarity for multi-source images. The task-specific routing networks customize these adapters to extract task-specific information from different sources with dynamic dominant intensity, performing adaptive visual feature prompt fusion. Notably, our TC-MoA controls the dominant intensity bias for different fusion tasks, successfully unifying multiple fusion tasks in a single model. Extensive experiments show that TC-MoA outperforms the competing approaches in learning commonalities while retaining compatibility for general image fusion (multi-modal, multi-exposure, and multi-focus), and also demonstrating striking controllability on more generalization experiments. The code is available at https://github.com/YangSun22/TC-MoA .