Abstract:Recently, many studies have been conducted to enhance the zero-shot generalization ability of vision-language models (e.g., CLIP) by addressing the semantic misalignment between image and text embeddings in downstream tasks. Although many efforts have been made, existing methods barely consider the fact that a class of images can be described by notably different textual concepts due to well-known lexical variation in natural language processing, which heavily affects the zero-shot generalization of CLIP. Therefore, this paper proposes a \textbf{S}ynonymous \textbf{S}emantic \textbf{S}pace ($S^3$) for each image class, rather than relying on a single textual concept, achieving more stable semantic alignment and improving the zero-shot generalization of CLIP. Specifically, our $S^3$ method first generates several synonymous concepts based on the label of each class by using large language models, and constructs a continuous yet compact synonymous semantic space based on the Vietoris-Rips complex of the generated synonymous concepts. Furthermore, we explore the effect of several point-to-space metrics on our $S^3$, while presenting a point-to-local-center metric to compute similarity between image embeddings and the synonymous semantic space of each class, accomplishing effective zero-shot predictions. Extensive experiments are conducted across 17 benchmarks, including fine-grained zero-shot classification, natural distribution zero-shot classification, and open-vocabulary segmentation, and the results show that our $S^3$ outperforms state-of-the-art methods.
Abstract:Going beyond few-shot action recognition (FSAR), cross-domain FSAR (CDFSAR) has attracted recent research interests by solving the domain gap lying in source-to-target transfer learning. Existing CDFSAR methods mainly focus on joint training of source and target data to mitigate the side effect of domain gap. However, such kind of methods suffer from two limitations: First, pair-wise joint training requires retraining deep models in case of one source data and multiple target ones, which incurs heavy computation cost, especially for large source and small target data. Second, pre-trained models after joint training are adopted to target domain in a straightforward manner, hardly taking full potential of pre-trained models and then limiting recognition performance. To overcome above limitations, this paper proposes a simple yet effective baseline, namely Temporal-Aware Model Tuning (TAMT) for CDFSAR. Specifically, our TAMT involves a decoupled paradigm by performing pre-training on source data and fine-tuning target data, which avoids retraining for multiple target data with single source. To effectively and efficiently explore the potential of pre-trained models in transferring to target domain, our TAMT proposes a Hierarchical Temporal Tuning Network (HTTN), whose core involves local temporal-aware adapters (TAA) and a global temporal-aware moment tuning (GTMT). Particularly, TAA learns few parameters to recalibrate the intermediate features of frozen pre-trained models, enabling efficient adaptation to target domains. Furthermore, GTMT helps to generate powerful video representations, improving match performance on the target domain. Experiments on several widely used video benchmarks show our TAMT outperforms the recently proposed counterparts by 13%$\sim$31%, achieving new state-of-the-art CDFSAR results.
Abstract:The dynamic imbalance of the fore-background is a major challenge in video object counting, which is usually caused by the sparsity of foreground objects. This often leads to severe under- and over-prediction problems and has been less studied in existing works. To tackle this issue in video object counting, we propose a density-embedded Efficient Masked Autoencoder Counting (E-MAC) framework in this paper. To effectively capture the dynamic variations across frames, we utilize an optical flow-based temporal collaborative fusion that aligns features to derive multi-frame density residuals. The counting accuracy of the current frame is boosted by harnessing the information from adjacent frames. More importantly, to empower the representation ability of dynamic foreground objects for intra-frame, we first take the density map as an auxiliary modality to perform $\mathtt{D}$ensity-$\mathtt{E}$mbedded $\mathtt{M}$asked m$\mathtt{O}$deling ($\mathtt{DEMO}$) for multimodal self-representation learning to regress density map. However, as $\mathtt{DEMO}$ contributes effective cross-modal regression guidance, it also brings in redundant background information and hard to focus on foreground regions. To handle this dilemma, we further propose an efficient spatial adaptive masking derived from density maps to boost efficiency. In addition, considering most existing datasets are limited to human-centric scenarios, we first propose a large video bird counting dataset $\textit{DroneBird}$, in natural scenarios for migratory bird protection. Extensive experiments on three crowd datasets and our $\textit{DroneBird}$ validate our superiority against the counterparts.
Abstract:Infrared and visible image fusion aim to integrate modality strengths for visually enhanced, informative images. Visible imaging in real-world scenarios is susceptible to dynamic environmental brightness fluctuations, leading to texture degradation. Existing fusion methods lack robustness against such brightness perturbations, significantly compromising the visual fidelity of the fused imagery. To address this challenge, we propose the Brightness Adaptive multimodal dynamic fusion framework (BA-Fusion), which achieves robust image fusion despite dynamic brightness fluctuations. Specifically, we introduce a Brightness Adaptive Gate (BAG) module, which is designed to dynamically select features from brightness-related channels for normalization, while preserving brightness-independent structural information within the source images. Furthermore, we propose a brightness consistency loss function to optimize the BAG module. The entire framework is tuned via alternating training strategies. Extensive experiments validate that our method surpasses state-of-the-art methods in preserving multi-modal image information and visual fidelity, while exhibiting remarkable robustness across varying brightness levels. Our code is available: https://github.com/SunYM2020/BA-Fusion.
Abstract:The inherent challenge of image fusion lies in capturing the correlation of multi-source images and comprehensively integrating effective information from different sources. Most existing techniques fail to perform dynamic image fusion while notably lacking theoretical guarantees, leading to potential deployment risks in this field. Is it possible to conduct dynamic image fusion with a clear theoretical justification? In this paper, we give our solution from a generalization perspective. We proceed to reveal the generalized form of image fusion and derive a new test-time dynamic image fusion paradigm. It provably reduces the upper bound of generalization error. Specifically, we decompose the fused image into multiple components corresponding to its source data. The decomposed components represent the effective information from the source data, thus the gap between them reflects the Relative Dominability (RD) of the uni-source data in constructing the fusion image. Theoretically, we prove that the key to reducing generalization error hinges on the negative correlation between the RD-based fusion weight and the uni-source reconstruction loss. Intuitively, RD dynamically highlights the dominant regions of each source and can be naturally converted to the corresponding fusion weight, achieving robust results. Extensive experiments and discussions with in-depth analysis on multiple benchmarks confirm our findings and superiority. Our code is available at https://github.com/Yinan-Xia/TTD.
Abstract:Image fusion aims to integrate complementary information from multiple input images acquired through various sources to synthesize a new fused image. Existing methods usually employ distinct constraint designs tailored to specific scenes, forming fixed fusion paradigms. However, this data-driven fusion approach is challenging to deploy in varying scenarios, especially in rapidly changing environments. To address this issue, we propose a conditional controllable fusion (CCF) framework for general image fusion tasks without specific training. Due to the dynamic differences of different samples, our CCF employs specific fusion constraints for each individual in practice. Given the powerful generative capabilities of the denoising diffusion model, we first inject the specific constraints into the pre-trained DDPM as adaptive fusion conditions. The appropriate conditions are dynamically selected to ensure the fusion process remains responsive to the specific requirements in each reverse diffusion stage. Thus, CCF enables conditionally calibrating the fused images step by step. Extensive experiments validate our effectiveness in general fusion tasks across diverse scenarios against the competing methods without additional training.
Abstract:Time series forecasting, which aims to predict future values based on historical data, has garnered significant attention due to its broad range of applications. However, real-world time series often exhibit complex non-uniform distribution with varying patterns across segments, such as season, operating condition, or semantic meaning, making accurate forecasting challenging. Existing approaches, which typically train a single model to capture all these diverse patterns, often struggle with the pattern drifts between patches and may lead to poor generalization. To address these challenges, we propose \textbf{TFPS}, a novel architecture that leverages pattern-specific experts for more accurate and adaptable time series forecasting. TFPS employs a dual-domain encoder to capture both time-domain and frequency-domain features, enabling a more comprehensive understanding of temporal dynamics. It then uses subspace clustering to dynamically identify distinct patterns across data patches. Finally, pattern-specific experts model these unique patterns, delivering tailored predictions for each patch. By explicitly learning and adapting to evolving patterns, TFPS achieves significantly improved forecasting accuracy. Extensive experiments on real-world datasets demonstrate that TFPS outperforms state-of-the-art methods, particularly in long-term forecasting, through its dynamic and pattern-aware learning approach. The data and codes are available: \url{https://github.com/syrGitHub/TFPS}.
Abstract:Out-of-distribution (OOD) detection is essential for model trustworthiness which aims to sensitively identify semantic OOD samples and robustly generalize for covariate-shifted OOD samples. However, we discover that the superior OOD detection performance of state-of-the-art methods is achieved by secretly sacrificing the OOD generalization ability. Specifically, the classification accuracy of these models could deteriorate dramatically when they encounter even minor noise. This phenomenon contradicts the goal of model trustworthiness and severely restricts their applicability in real-world scenarios. What is the hidden reason behind such a limitation? In this work, we theoretically demystify the ``\textit{sensitive-robust}'' dilemma that lies in many existing OOD detection methods. Consequently, a theory-inspired algorithm is induced to overcome such a dilemma. By decoupling the uncertainty learning objective from a Bayesian perspective, the conflict between OOD detection and OOD generalization is naturally harmonized and a dual-optimal performance could be expected. Empirical studies show that our method achieves superior performance on standard benchmarks. To our best knowledge, this work is the first principled OOD detection method that achieves state-of-the-art OOD detection performance without compromising OOD generalization ability. Our code is available at \href{https://github.com/QingyangZhang/DUL}{https://github.com/QingyangZhang/DUL}.
Abstract:Vision-language foundation models (e.g., CLIP) have shown remarkable performance across a wide range of tasks. However, deploying these models may be unreliable when significant distribution gaps exist between the training and test data. The training-free test-time dynamic adapter (TDA) is a promising approach to address this issue by storing representative test samples to guide the classification of subsequent ones. However, TDA only naively maintains a limited number of reference samples in the cache, leading to severe test-time catastrophic forgetting when the cache is updated by dropping samples. In this paper, we propose a simple yet effective method for DistributiOnal Test-time Adaptation (Dota). Instead of naively memorizing representative test samples, Dota continually estimates the distributions of test samples, allowing the model to continually adapt to the deployment environment. The test-time posterior probabilities are then computed using the estimated distributions based on Bayes' theorem for adaptation purposes. To further enhance the adaptability on the uncertain samples, we introduce a new human-in-the-loop paradigm which identifies uncertain samples, collects human-feedback, and incorporates it into the Dota framework. Extensive experiments validate that Dota enables CLIP to continually learn, resulting in a significant improvement compared to current state-of-the-art methods.
Abstract:Fine-grained domain generalization (FGDG) is a more challenging task than traditional DG tasks due to its small inter-class variations and relatively large intra-class disparities. When domain distribution changes, the vulnerability of subtle features leads to a severe deterioration in model performance. Nevertheless, humans inherently demonstrate the capacity for generalizing to out-of-distribution data, leveraging structured multi-granularity knowledge that emerges from discerning the commonality and specificity within categories. Likewise, we propose a Feature Structuralized Domain Generalization (FSDG) model, wherein features experience structuralization into common, specific, and confounding segments, harmoniously aligned with their relevant semantic concepts, to elevate performance in FGDG. Specifically, feature structuralization (FS) is accomplished through joint optimization of five constraints: a decorrelation function applied to disentangled segments, three constraints ensuring common feature consistency and specific feature distinctiveness, and a prediction calibration term. By imposing these stipulations, FSDG is prompted to disentangle and align features based on multi-granularity knowledge, facilitating robust subtle distinctions among categories. Extensive experimentation on three benchmarks consistently validates the superiority of FSDG over state-of-the-art counterparts, with an average improvement of 6.2% in FGDG performance. Beyond that, the explainability analysis on explicit concept matching intensity between the shared concepts among categories and the model channels, along with experiments on various mainstream model architectures, substantiates the validity of FS.