Abstract:Multimodal Large Language Models (MLLM) are primarily pre-trained on the RGB modality, thereby limiting their performance on other modalities, such as infrared, depth, and event data, which are crucial for complex scenarios. To address this, we propose RGBX-R1, a framework to enhance MLLM's perception and reasoning capacities across various X visual modalities. Specifically, we employ an Understand-Associate-Validate (UAV) prompting strategy to construct the Visual Modality Chain-of-Thought (VM-CoT), which aims to expand the MLLMs' RGB understanding capability into X modalities. To progressively enhance reasoning capabilities, we introduce a two-stage training paradigm: Cold-Start Supervised Fine-Tuning (CS-SFT) and Spatio-Temporal Reinforcement Fine-Tuning (ST-RFT). CS-SFT supervises the reasoning process with the guidance of VM-CoT, equipping the MLLM with fundamental modality cognition. Building upon GRPO, ST-RFT employs a Modality-understanding Spatio-Temporal (MuST) reward to reinforce modality reasoning. Notably, we construct the first RGBX-Grounding benchmark, and extensive experiments verify our superiority in multimodal understanding and spatial perception, outperforming baselines by 22.71% on three RGBX grounding tasks.
Abstract:Multi-modal image fusion aims to consolidate complementary information from diverse source images into a unified representation. The fused image is expected to preserve fine details and maintain high visual fidelity. While diffusion models have demonstrated impressive generative capabilities in image generation, they often suffer from detail loss when applied to image fusion tasks. This issue arises from the accumulation of noise errors inherent in the Markov process, leading to inconsistency and degradation in the fused results. However, incorporating explicit supervision into end-to-end training of diffusion-based image fusion introduces challenges related to computational efficiency. To address these limitations, we propose the Reversible Efficient Diffusion (RED) model - an explicitly supervised training framework that inherits the powerful generative capability of diffusion models while avoiding the distribution estimation.
Abstract:Infrared and visible image fusion generates all-weather perception-capable images by combining complementary modalities, enhancing environmental awareness for intelligent unmanned systems. Existing methods either focus on pixel-level fusion while overlooking downstream task adaptability or implicitly learn rigid semantics through cascaded detection/segmentation models, unable to interactively address diverse semantic target perception needs. We propose CtrlFuse, a controllable image fusion framework that enables interactive dynamic fusion guided by mask prompts. The model integrates a multi-modal feature extractor, a reference prompt encoder (RPE), and a prompt-semantic fusion module (PSFM). The RPE dynamically encodes task-specific semantic prompts by fine-tuning pre-trained segmentation models with input mask guidance, while the PSFM explicitly injects these semantics into fusion features. Through synergistic optimization of parallel segmentation and fusion branches, our method achieves mutual enhancement between task performance and fusion quality. Experiments demonstrate state-of-the-art results in both fusion controllability and segmentation accuracy, with the adapted task branch even outperforming the original segmentation model.
Abstract:Visual word sense disambiguation focuses on polysemous words, where candidate images can be easily confused. Traditional methods use classical probability to calculate the likelihood of an image matching each gloss of the target word, summing these to form a posterior probability. However, due to the challenge of semantic uncertainty, glosses from different sources inevitably carry semantic biases, which can lead to biased disambiguation results. Inspired by quantum superposition in modeling uncertainty, this paper proposes a Quantum Inference Model for Unsupervised Visual Word Sense Disambiguation (Q-VWSD). It encodes multiple glosses of the target word into a superposition state to mitigate semantic biases. Then, the quantum circuit is executed, and the results are observed. By formalizing our method, we find that Q-VWSD is a quantum generalization of the method based on classical probability. Building on this, we further designed a heuristic version of Q-VWSD that can run more efficiently on classical computing. The experiments demonstrate that our method outperforms state-of-the-art classical methods, particularly by effectively leveraging non-specialized glosses from large language models, which further enhances performance. Our approach showcases the potential of quantum machine learning in practical applications and provides a case for leveraging quantum modeling advantages on classical computers while quantum hardware remains immature.
Abstract:Virtual furniture synthesis, which seamlessly integrates reference objects into indoor scenes while maintaining geometric coherence and visual realism, holds substantial promise for home design and e-commerce applications. However, this field remains underexplored due to the scarcity of reproducible benchmarks and the limitations of existing image composition methods in achieving high-fidelity furniture synthesis while preserving background integrity. To overcome these challenges, we first present RoomBench++, a comprehensive and publicly available benchmark dataset tailored for this task. It consists of 112,851 training pairs and 1,832 testing pairs drawn from both real-world indoor videos and realistic home design renderings, thereby supporting robust training and evaluation under practical conditions. Then, we propose RoomEditor++, a versatile diffusion-based architecture featuring a parameter-sharing dual diffusion backbone, which is compatible with both U-Net and DiT architectures. This design unifies the feature extraction and inpainting processes for reference and background images. Our in-depth analysis reveals that the parameter-sharing mechanism enforces aligned feature representations, facilitating precise geometric transformations, texture preservation, and seamless integration. Extensive experiments validate that RoomEditor++ is superior over state-of-the-art approaches in terms of quantitative metrics, qualitative assessments, and human preference studies, while highlighting its strong generalization to unseen indoor scenes and general scenes without task-specific fine-tuning. The dataset and source code are available at \url{https://github.com/stonecutter-21/roomeditor}.
Abstract:All-in-one image restoration aims to handle diverse degradations (e.g., noise, blur, adverse weather) within a unified framework, yet existing methods increasingly rely on complex architectures (e.g., Mixture-of-Experts, diffusion models) and elaborate degradation prompt strategies. In this work, we reveal a critical insight: well-crafted feature extraction inherently encodes degradation-carrying information, and a symmetric U-Net architecture is sufficient to unleash these cues effectively. By aligning feature scales across encoder-decoder and enabling streamlined cross-scale propagation, our symmetric design preserves intrinsic degradation signals robustly, rendering simple additive fusion in skip connections sufficient for state-of-the-art performance. Our primary baseline, SymUNet, is built on this symmetric U-Net and achieves better results across benchmark datasets than existing approaches while reducing computational cost. We further propose a semantic enhanced variant, SE-SymUNet, which integrates direct semantic injection from frozen CLIP features via simple cross-attention to explicitly amplify degradation priors. Extensive experiments on several benchmarks validate the superiority of our methods. Both baselines SymUNet and SE-SymUNet establish simpler and stronger foundations for future advancements in all-in-one image restoration. The source code is available at https://github.com/WenlongJiao/SymUNet.
Abstract:Arbitrary-scale video super-resolution (AVSR) aims to enhance the resolution of video frames, potentially at various scaling factors, which presents several challenges regarding spatial detail reproduction, temporal consistency, and computational complexity. In this paper, we propose a strong baseline BasicAVSR for AVSR by integrating four key components: 1) adaptive multi-scale frequency priors generated from image Laplacian pyramids, 2) a flow-guided propagation unit to aggregate spatiotemporal information from adjacent frames, 3) a second-order motion compensation unit for more accurate spatial alignment of adjacent frames, and 4) a hyper-upsampling unit to generate scale-aware and content-independent upsampling kernels. To meet diverse application demands, we instantiate three propagation variants: (i) a unidirectional RNN unit for strictly online inference, (ii) a unidirectional RNN unit empowered with a limited lookahead that tolerates a small output delay, and (iii) a bidirectional RNN unit designed for offline tasks where computational resources are less constrained. Experimental results demonstrate the effectiveness and adaptability of our model across these different scenarios. Through extensive experiments, we show that BasicAVSR significantly outperforms existing methods in terms of super-resolution quality, generalization ability, and inference speed. Our work not only advances the state-of-the-art in AVSR but also extends its core components to multiple frameworks for diverse scenarios. The code is available at https://github.com/shangwei5/BasicAVSR.
Abstract:Vision-language models (VLMs) pre-trained on web-scale data exhibit promising zero-shot generalization but often suffer from semantic misalignment due to domain gaps between pre-training and downstream tasks. Existing approaches primarily focus on text prompting with class-specific descriptions and visual-text adaptation via aligning cropped image regions with textual descriptions. However, they still face the issues of incomplete textual prompts and noisy visual prompts. In this paper, we propose a novel constrained prompt enhancement (CPE) method to improve visual-textual alignment by constructing comprehensive textual prompts and compact visual prompts from the semantic perspective. Specifically, our approach consists of two key components: Topology-Guided Synonymous Semantic Generation (TGSSG) and Category-Agnostic Discriminative Region Selection (CADRS). Textually, to address the issue of incomplete semantic expression in textual prompts, our TGSSG first generates synonymous semantic set for each category via large language models, and constructs comprehensive textual prompts based on semantic ambiguity entropy and persistent homology analysis. Visually, to mitigate the irrelevant visual noise introduced by random cropping, our CADRS identifies discriminative regions with activation maps outputted by a pre-trained vision model, effectively filtering out noisy regions and generating compact visual prompts. Given the comprehensive set of textual prompts and compact set of visual prompts, we introduce two set-to-set matching strategies based on test-time adaptation (TTA) and optimal transport (OT) to achieve effective visual-textual alignment, and so improve zero-shot generalization of VLMs.
Abstract:Large Language Models (LLMs) are being increasingly deployed in real-world applications, but they remain susceptible to hallucinations, which produce fluent yet incorrect responses and lead to erroneous decision-making. Uncertainty estimation is a feasible approach to detect such hallucinations. For example, semantic entropy estimates uncertainty by considering the semantic diversity across multiple sampled responses, thus identifying hallucinations. However, semantic entropy relies on post-softmax probabilities and fails to capture the model's inherent uncertainty, causing it to be ineffective in certain scenarios. To address this issue, we introduce Semantic Energy, a novel uncertainty estimation framework that leverages the inherent confidence of LLMs by operating directly on logits of penultimate layer. By combining semantic clustering with a Boltzmann-inspired energy distribution, our method better captures uncertainty in cases where semantic entropy fails. Experiments across multiple benchmarks show that Semantic Energy significantly improves hallucination detection and uncertainty estimation, offering more reliable signals for downstream applications such as hallucination detection.
Abstract:Large Language Models (LLMs) have recently demonstrated impressive capabilities in natural language processing due to their strong generalization and sequence modeling capabilities. However, their direct application to time series forecasting remains challenging due to two fundamental issues: the inherent heterogeneity of temporal patterns and the modality gap between continuous numerical signals and discrete language representations. In this work, we propose TALON, a unified framework that enhances LLM-based forecasting by modeling temporal heterogeneity and enforcing semantic alignment. Specifically, we design a Heterogeneous Temporal Encoder that partitions multivariate time series into structurally coherent segments, enabling localized expert modeling across diverse temporal patterns. To bridge the modality gap, we introduce a Semantic Alignment Module that aligns temporal features with LLM-compatible representations, enabling effective integration of time series into language-based models while eliminating the need for handcrafted prompts during inference. Extensive experiments on seven real-world benchmarks demonstrate that TALON achieves superior performance across all datasets, with average MSE improvements of up to 11\% over recent state-of-the-art methods. These results underscore the effectiveness of incorporating both pattern-aware and semantic-aware designs when adapting LLMs for time series forecasting. The code is available at: https://github.com/syrGitHub/TALON.