Abstract:Image fusion aims to integrate comprehensive information from images acquired through multiple sources. However, images captured by diverse sensors often encounter various degradations that can negatively affect fusion quality. Traditional fusion methods generally treat image enhancement and fusion as separate processes, overlooking the inherent correlation between them; notably, the dominant regions in one modality of a fused image often indicate areas where the other modality might benefit from enhancement. Inspired by this observation, we introduce the concept of dominant regions for image enhancement and present a Dynamic Relative EnhAnceMent framework for Image Fusion (Dream-IF). This framework quantifies the relative dominance of each modality across different layers and leverages this information to facilitate reciprocal cross-modal enhancement. By integrating the relative dominance derived from image fusion, our approach supports not only image restoration but also a broader range of image enhancement applications. Furthermore, we employ prompt-based encoding to capture degradation-specific details, which dynamically steer the restoration process and promote coordinated enhancement in both multi-modal image fusion and image enhancement scenarios. Extensive experimental results demonstrate that Dream-IF consistently outperforms its counterparts.
Abstract:Image fusion aims to integrate complementary information from multiple input images acquired through various sources to synthesize a new fused image. Existing methods usually employ distinct constraint designs tailored to specific scenes, forming fixed fusion paradigms. However, this data-driven fusion approach is challenging to deploy in varying scenarios, especially in rapidly changing environments. To address this issue, we propose a conditional controllable fusion (CCF) framework for general image fusion tasks without specific training. Due to the dynamic differences of different samples, our CCF employs specific fusion constraints for each individual in practice. Given the powerful generative capabilities of the denoising diffusion model, we first inject the specific constraints into the pre-trained DDPM as adaptive fusion conditions. The appropriate conditions are dynamically selected to ensure the fusion process remains responsive to the specific requirements in each reverse diffusion stage. Thus, CCF enables conditionally calibrating the fused images step by step. Extensive experiments validate our effectiveness in general fusion tasks across diverse scenarios against the competing methods without additional training.