Abstract:Artificial intelligence has advanced in Medical Visual Question Answering (Med-VQA), but prevalent research tends to focus on the accuracy of the answers, often overlooking the reasoning paths and interpretability, which are crucial in clinical settings. Besides, current Med-VQA algorithms, typically reliant on singular models, lack the robustness needed for real-world medical diagnostics which usually require collaborative expert evaluation. To address these shortcomings, this paper presents MedCoT, a novel hierarchical expert verification reasoning chain method designed to enhance interpretability and accuracy in biomedical imaging inquiries. MedCoT is predicated on two principles: The necessity for explicit reasoning paths in Med-VQA and the requirement for multi-expert review to formulate accurate conclusions. The methodology involves an Initial Specialist proposing diagnostic rationales, followed by a Follow-up Specialist who validates these rationales, and finally, a consensus is reached through a vote among a sparse Mixture of Experts within the locally deployed Diagnostic Specialist, which then provides the definitive diagnosis. Experimental evaluations on four standard Med-VQA datasets demonstrate that MedCoT surpasses existing state-of-the-art approaches, providing significant improvements in performance and interpretability.
Abstract:Recently, polar coordinate-based representations have shown promise for 3D perceptual tasks. Compared to Cartesian methods, polar grids provide a viable alternative, offering better detail preservation in nearby spaces while covering larger areas. However, they face feature distortion due to non-uniform division. To address these issues, we introduce the Polar Voxel Occupancy Predictor (PVP), a novel 3D multi-modal predictor that operates in polar coordinates. PVP features two key design elements to overcome distortion: a Global Represent Propagation (GRP) module that integrates global spatial data into 3D volumes, and a Plane Decomposed Convolution (PD-Conv) that simplifies 3D distortions into 2D convolutions. These innovations enable PVP to outperform existing methods, achieving significant improvements in mIoU and IoU metrics on the OpenOccupancy dataset.
Abstract:The rapid development of AI models has led to a growing emphasis on enhancing their capabilities for complex input data such as videos. While large-scale video datasets have been introduced to support this growth, the unique challenges of reducing redundancies in video \textbf{sets} have not been explored. Compared to image datasets or individual videos, video \textbf{sets} have a two-layer nested structure, where the outer layer is the collection of individual videos, and the inner layer contains the correlations among frame-level data points to provide temporal information. Video \textbf{sets} have two dimensions of redundancies: within-sample and inter-sample redundancies. Existing methods like key frame selection, dataset pruning or dataset distillation are not addressing the unique challenge of video sets since they aimed at reducing redundancies in only one of the dimensions. In this work, we are the first to study Video Set Distillation, which synthesizes optimized video data by jointly addressing within-sample and inter-sample redundancies. Our Information Diversification and Temporal Densification (IDTD) method jointly reduces redundancies across both dimensions. This is achieved through a Feature Pool and Feature Selectors mechanism to preserve inter-sample diversity, alongside a Temporal Fusor that maintains temporal information density within synthesized videos. Our method achieves state-of-the-art results in Video Dataset Distillation, paving the way for more effective redundancy reduction and efficient AI model training on video datasets.
Abstract:Out-of-distribution (OOD) detection is essential for model trustworthiness which aims to sensitively identify semantic OOD samples and robustly generalize for covariate-shifted OOD samples. However, we discover that the superior OOD detection performance of state-of-the-art methods is achieved by secretly sacrificing the OOD generalization ability. Specifically, the classification accuracy of these models could deteriorate dramatically when they encounter even minor noise. This phenomenon contradicts the goal of model trustworthiness and severely restricts their applicability in real-world scenarios. What is the hidden reason behind such a limitation? In this work, we theoretically demystify the ``\textit{sensitive-robust}'' dilemma that lies in many existing OOD detection methods. Consequently, a theory-inspired algorithm is induced to overcome such a dilemma. By decoupling the uncertainty learning objective from a Bayesian perspective, the conflict between OOD detection and OOD generalization is naturally harmonized and a dual-optimal performance could be expected. Empirical studies show that our method achieves superior performance on standard benchmarks. To our best knowledge, this work is the first principled OOD detection method that achieves state-of-the-art OOD detection performance without compromising OOD generalization ability. Our code is available at \href{https://github.com/QingyangZhang/DUL}{https://github.com/QingyangZhang/DUL}.
Abstract:The sharp increase in data-related expenses has motivated research into condensing datasets while retaining the most informative features. Dataset distillation has thus recently come to the fore. This paradigm generates synthetic dataset that are representative enough to replace the original dataset in training a neural network. To avoid redundancy in these synthetic datasets, it is crucial that each element contains unique features and remains diverse from others during the synthesis stage. In this paper, we provide a thorough theoretical and empirical analysis of diversity within synthesized datasets. We argue that enhancing diversity can improve the parallelizable yet isolated synthesizing approach. Specifically, we introduce a novel method that employs dynamic and directed weight adjustment techniques to modulate the synthesis process, thereby maximizing the representativeness and diversity of each synthetic instance. Our method ensures that each batch of synthetic data mirrors the characteristics of a large, varying subset of the original dataset. Extensive experiments across multiple datasets, including CIFAR, Tiny-ImageNet, and ImageNet-1K, demonstrate the superior performance of our method, highlighting its effectiveness in producing diverse and representative synthetic datasets with minimal computational expense.
Abstract:Dataset distillation has emerged as a technique aiming to condense informative features from large, natural datasets into a compact and synthetic form. While recent advancements have refined this technique, its performance is bottlenecked by the prevailing class-specific synthesis paradigm. Under this paradigm, synthetic data is optimized exclusively for a pre-assigned one-hot label, creating an implicit class barrier in feature condensation. This leads to inefficient utilization of the distillation budget and oversight of inter-class feature distributions, which ultimately limits the effectiveness and efficiency, as demonstrated in our analysis. To overcome these constraints, this paper presents the Inter-class Feature Compensator (INFER), an innovative distillation approach that transcends the class-specific data-label framework widely utilized in current dataset distillation methods. Specifically, INFER leverages a Universal Feature Compensator (UFC) to enhance feature integration across classes, enabling the generation of multiple additional synthetic instances from a single UFC input. This significantly improves the efficiency of the distillation budget. Moreover, INFER enriches inter-class interactions during the distillation, thereby enhancing the effectiveness and generalizability of the distilled data. By allowing for the linear interpolation of labels similar to those in the original dataset, INFER meticulously optimizes the synthetic data and dramatically reduces the size of soft labels in the synthetic dataset to almost zero, establishing a new benchmark for efficiency and effectiveness in dataset distillation.
Abstract:Generating fair and accurate predictions plays a pivotal role in deploying large language models (LLMs) in the real world. However, existing debiasing methods inevitably generate unfair or incorrect predictions as they are designed and evaluated to achieve parity across different social groups but leave aside individual commonsense facts, resulting in modified knowledge that elicits unreasonable or undesired predictions. In this paper, we first establish a new bias mitigation benchmark, BiaScope, which systematically assesses performance by leveraging newly constructed datasets and metrics on knowledge retention and generalization. Then, we propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases. FAST identifies the decisive layer responsible for storing social biases and then calibrates its outputs by integrating a small modular network, considering both bias mitigation and knowledge-preserving demands. Comprehensive experiments demonstrate that FAST surpasses state-of-the-art baselines with superior debiasing performance while not compromising the overall model capability for knowledge retention and downstream predictions. This highlights the potential of fine-grained debiasing strategies to achieve fairness in LLMs. Code will be publicly available.
Abstract:This survey addresses the critical challenge of deepfake detection amidst the rapid advancements in artificial intelligence. As AI-generated media, including video, audio and text, become more realistic, the risk of misuse to spread misinformation and commit identity fraud increases. Focused on face-centric deepfakes, this work traces the evolution from traditional single-modality methods to sophisticated multi-modal approaches that handle audio-visual and text-visual scenarios. We provide comprehensive taxonomies of detection techniques, discuss the evolution of generative methods from auto-encoders and GANs to diffusion models, and categorize these technologies by their unique attributes. To our knowledge, this is the first survey of its kind. We also explore the challenges of adapting detection methods to new generative models and enhancing the reliability and robustness of deepfake detectors, proposing directions for future research. This survey offers a detailed roadmap for researchers, supporting the development of technologies to counter the deceptive use of AI in media creation, particularly facial forgery. A curated list of all related papers can be found at \href{https://github.com/qiqitao77/Comprehensive-Advances-in-Deepfake-Detection-Spanning-Diverse-Modalities}{https://github.com/qiqitao77/Awesome-Comprehensive-Deepfake-Detection}.
Abstract:In the medical field, managing high-dimensional massive medical imaging data and performing reliable medical analysis from it is a critical challenge, especially in resource-limited environments such as remote medical facilities and mobile devices. This necessitates effective dataset compression techniques to reduce storage, transmission, and computational cost. However, existing coreset selection methods are primarily designed for natural image datasets, and exhibit doubtful effectiveness when applied to medical image datasets due to challenges such as intra-class variation and inter-class similarity. In this paper, we propose a novel coreset selection strategy termed as Evolution-aware VAriance (EVA), which captures the evolutionary process of model training through a dual-window approach and reflects the fluctuation of sample importance more precisely through variance measurement. Extensive experiments on medical image datasets demonstrate the effectiveness of our strategy over previous SOTA methods, especially at high compression rates. EVA achieves 98.27% accuracy with only 10% training data, compared to 97.20% for the full training set. None of the compared baseline methods can exceed Random at 5% selection rate, while EVA outperforms Random by 5.61%, showcasing its potential for efficient medical image analysis.
Abstract:Hierarchical vision transformers (ViTs) have two advantages over conventional ViTs. First, hierarchical ViTs achieve linear computational complexity with respect to image size by local self-attention. Second, hierarchical ViTs create hierarchical feature maps by merging image patches in deeper layers for dense prediction. However, existing pruning methods ignore the unique properties of hierarchical ViTs and use the magnitude value as the weight importance. This approach leads to two main drawbacks. First, the "local" attention weights are compared at a "global" level, which may cause some "locally" important weights to be pruned due to their relatively small magnitude "globally". The second issue with magnitude pruning is that it fails to consider the distinct weight distributions of the network, which are essential for extracting coarse to fine-grained features at various hierarchical levels. To solve the aforementioned issues, we have developed a Data-independent Module-Aware Pruning method (DIMAP) to compress hierarchical ViTs. To ensure that "local" attention weights at different hierarchical levels are compared fairly in terms of their contribution, we treat them as a module and examine their contribution by analyzing their information distortion. Furthermore, we introduce a novel weight metric that is solely based on weights and does not require input images, thereby eliminating the dependence on the patch merging process. Our method validates its usefulness and strengths on Swin Transformers of different sizes on ImageNet-1k classification. Notably, the top-5 accuracy drop is only 0.07% when we remove 52.5% FLOPs and 52.7% parameters of Swin-B. When we reduce 33.2% FLOPs and 33.2% parameters of Swin-S, we can even achieve a 0.8% higher relative top-5 accuracy than the original model. Code is available at: https://github.com/he-y/Data-independent-Module-Aware-Pruning