Abstract:Generating lifelike human motions from descriptive texts has experienced remarkable research focus in the recent years, propelled by the emerging requirements of digital humans.Despite impressive advances, existing approaches are often constrained by limited control modalities, task specificity, and focus solely on body motion representations.In this paper, we present MotionGPT-2, a unified Large Motion-Language Model (LMLM) that addresses these limitations. MotionGPT-2 accommodates multiple motion-relevant tasks and supporting multimodal control conditions through pre-trained Large Language Models (LLMs). It quantizes multimodal inputs-such as text and single-frame poses-into discrete, LLM-interpretable tokens, seamlessly integrating them into the LLM's vocabulary. These tokens are then organized into unified prompts, guiding the LLM to generate motion outputs through a pretraining-then-finetuning paradigm. We also show that the proposed MotionGPT-2 is highly adaptable to the challenging 3D holistic motion generation task, enabled by the innovative motion discretization framework, Part-Aware VQVAE, which ensures fine-grained representations of body and hand movements. Extensive experiments and visualizations validate the effectiveness of our method, demonstrating the adaptability of MotionGPT-2 across motion generation, motion captioning, and generalized motion completion tasks.
Abstract:The recent revolutionary advance in generative AI enables the generation of realistic and coherent texts by large language models (LLMs). Despite many existing evaluation metrics on the quality of the generated texts, there is still a lack of rigorous assessment of how well LLMs perform in complex and demanding writing assessments. This study examines essays generated by ten leading LLMs for the analytical writing assessment of the Graduate Record Exam (GRE). We assessed these essays using both human raters and the e-rater automated scoring engine as used in the GRE scoring pipeline. Notably, the top-performing Gemini and GPT-4o received an average score of 4.78 and 4.67, respectively, falling between "generally thoughtful, well-developed analysis of the issue and conveys meaning clearly" and "presents a competent analysis of the issue and conveys meaning with acceptable clarity" according to the GRE scoring guideline. We also evaluated the detection accuracy of these essays, with detectors trained on essays generated by the same and different LLMs.
Abstract:With recent advances in large language models (LLMs), there has been emerging numbers of research in developing Semantic IDs based on LLMs to enhance the performance of recommendation systems. However, the dimension of these embeddings needs to match that of the ID embedding in recommendation, which is usually much smaller than the original length. Such dimension compression results in inevitable losses in discriminability and dimension robustness of the LLM embeddings, which motivates us to scale up the semantic representation. In this paper, we propose Mixture-of-Codes, which first constructs multiple independent codebooks for LLM representation in the indexing stage, and then utilizes the Semantic Representation along with a fusion module for the downstream recommendation stage. Extensive analysis and experiments demonstrate that our method achieves superior discriminability and dimension robustness scalability, leading to the best scale-up performance in recommendations.
Abstract:Point cloud few-shot semantic segmentation (PC-FSS) aims to segment targets of novel categories in a given query point cloud with only a few annotated support samples. The current top-performing prototypical learning methods employ prototypes originating from support samples to direct the classification of query points. However, the inherent fragility of point-level matching and the prevalent intra-class diversity pose great challenges to this cross-instance matching paradigm, leading to erroneous background activations or incomplete target excavation. In this work, we propose a simple yet effective framework in the spirit of Decoupled Localization and Expansion (DLE). The proposed DLE, including a structural localization module (SLM) and a self-expansion module (SEM), enjoys several merits. First, structural information is injected into the matching process through the agent-level correlation in SLM, and the confident target region can thus be precisely located. Second, more reliable intra-object similarity is harnessed in SEM to derive the complete target, and the conservative expansion strategy is introduced to reasonably constrain the expansion. Extensive experiments on two challenging benchmarks under different settings demonstrate that DLE outperforms previous state-of-the-art approaches by large margins.
Abstract:Recently, applying neural networks to address combinatorial optimization problems (COPs) has attracted considerable research attention. The prevailing methods always train deep models independently on specific problems, lacking a unified framework for concurrently tackling various COPs. To this end, we propose a unified neural combinatorial optimization (UNCO) framework to solve different types of COPs by a single model. Specifically, we use natural language to formulate text-attributed instances for different COPs and encode them in the same embedding space by the large language model (LLM). The obtained embeddings are further advanced by an encoder-decoder model without any problem-specific modules, thereby facilitating a unified process of solution construction. We further adopt the conflict gradients erasing reinforcement learning (CGERL) algorithm to train the UNCO model, delivering better performance across different COPs than vanilla multi-objective learning. Experiments show that the UNCO model can solve multiple COPs after a single-session training, and achieves satisfactory performance that is comparable to several traditional or learning-based baselines. Instead of pursuing the best performance for each COP, we explore the synergy between tasks and few-shot generalization based on LLM to inspire future work.
Abstract:Mixture-of-Experts (MoE) models are designed to enhance the efficiency of large language models (LLMs) without proportionally increasing the computational demands. However, their deployment on edge devices still faces significant challenges due to high on-demand loading overheads from managing sparsely activated experts. This paper introduces AdapMoE, an algorithm-system co-design framework for efficient MoE inference. AdapMoE features adaptive expert gating and management to reduce the on-demand loading overheads. We observe the heterogeneity of experts loading across layers and tokens, based on which we propose a sensitivity-based strategy to adjust the number of activated experts dynamically. Meanwhile, we also integrate advanced prefetching and cache management techniques to further reduce the loading latency. Through comprehensive evaluations on various platforms, we demonstrate AdapMoE consistently outperforms existing techniques, reducing the average number of activated experts by 25% and achieving a 1.35x speedup without accuracy degradation. Code is available at: https://github.com/PKU-SEC-Lab/AdapMoE.
Abstract:Missing data in tabular dataset is a common issue as the performance of downstream tasks usually depends on the completeness of the training dataset. Previous missing data imputation methods focus on numeric and categorical columns, but we propose a novel end-to-end approach called Table Transformers for Imputing Textual Attributes (TTITA) based on the transformer to impute unstructured textual columns using other columns in the table. We conduct extensive experiments on two Amazon Reviews datasets, and our approach shows competitive performance outperforming baseline models such as recurrent neural networks and Llama2. The performance improvement is more significant when the target sequence has a longer length. Additionally, we incorporated multi-task learning to simultaneously impute for heterogeneous columns, boosting the performance for text imputation. We also qualitatively compare with ChatGPT for realistic applications.
Abstract:Vision Transformer (ViT) acceleration with field programmable gate array (FPGA) is promising but challenging. Existing FPGA-based ViT accelerators mainly rely on temporal architectures, which process different operators by reusing the same hardware blocks and suffer from extensive memory access overhead. Pipelined architectures, either coarse-grained or fine-grained, unroll the ViT computation spatially for memory access efficiency. However, they usually suffer from significant hardware resource constraints and pipeline bubbles induced by the global computation dependency of ViT. In this paper, we introduce HG-PIPE, a pipelined FPGA accelerator for high-throughput and low-latency ViT processing. HG-PIPE features a hybrid-grained pipeline architecture to reduce on-chip buffer cost and couples the computation dataflow and parallelism design to eliminate the pipeline bubbles. HG-PIPE further introduces careful approximations to implement both linear and non-linear operators with abundant Lookup Tables (LUTs), thus alleviating resource constraints. On a ZCU102 FPGA, HG-PIPE achieves 2.78 times better throughput and 2.52 times better resource efficiency than the prior-art accelerators, e.g., AutoViTAcc. With a VCK190 FPGA, HG-PIPE realizes end-to-end ViT acceleration on a single device and achieves 7118 images/s, which is 2.81 times faster than a V100 GPU.
Abstract:Deep learning methods have achieved a lot of success in various applications involving converting wearable sensor data to actionable health insights. A common application areas is activity recognition, where deep-learning methods still suffer from limitations such as sensitivity to signal quality, sensor characteristic variations, and variability between subjects. To mitigate these issues, robust features obtained by topological data analysis (TDA) have been suggested as a potential solution. However, there are two significant obstacles to using topological features in deep learning: (1) large computational load to extract topological features using TDA, and (2) different signal representations obtained from deep learning and TDA which makes fusion difficult. In this paper, to enable integration of the strengths of topological methods in deep-learning for time-series data, we propose to use two teacher networks, one trained on the raw time-series data, and another trained on persistence images generated by TDA methods. The distilled student model utilizes only the raw time-series data at test-time. This approach addresses both issues. The use of KD with multiple teachers utilizes complementary information, and results in a compact model with strong supervisory features and an integrated richer representation. To assimilate desirable information from different modalities, we design new constraints, including orthogonality imposed on feature correlation maps for improving feature expressiveness and allowing the student to easily learn from the teacher. Also, we apply an annealing strategy in KD for fast saturation and better accommodation from different features, while the knowledge gap between the teachers and student is reduced. Finally, a robust student model is distilled, which uses only the time-series data as an input, while implicitly preserving topological features.
Abstract:Large vision-language models (LVLMs) have recently achieved significant progress, demonstrating strong capabilities in open-world visual understanding. However, it is not yet clear how LVLMs address demographic biases in real life, especially the disparities across attributes such as gender, skin tone, and age. In this paper, we empirically investigate \emph{visual fairness} in several mainstream LVLMs and audit their performance disparities across sensitive demographic attributes, based on public fairness benchmark datasets (e.g., FACET). To disclose the visual bias in LVLMs, we design a fairness evaluation framework with direct questions and single-choice question-instructed prompts on visual question-answering/classification tasks. The zero-shot prompting results indicate that, despite enhancements in visual understanding, both open-source and closed-source LVLMs exhibit prevalent fairness issues across different instruct prompts and demographic attributes.