Abstract:Medical Vision-Language Pretraining (MedVLP) shows promise in learning generalizable and transferable visual representations from paired and unpaired medical images and reports. MedVLP can provide useful features to downstream tasks and facilitate adapting task-specific models to new setups using fewer examples. However, existing MedVLP methods often differ in terms of datasets, preprocessing, and finetuning implementations. This pose great challenges in evaluating how well a MedVLP method generalizes to various clinically-relevant tasks due to the lack of unified, standardized, and comprehensive benchmark. To fill this gap, we propose BenchX, a unified benchmark framework that enables head-to-head comparison and systematical analysis between MedVLP methods using public chest X-ray datasets. Specifically, BenchX is composed of three components: 1) Comprehensive datasets covering nine datasets and four medical tasks; 2) Benchmark suites to standardize data preprocessing, train-test splits, and parameter selection; 3) Unified finetuning protocols that accommodate heterogeneous MedVLP methods for consistent task adaptation in classification, segmentation, and report generation, respectively. Utilizing BenchX, we establish baselines for nine state-of-the-art MedVLP methods and found that the performance of some early MedVLP methods can be enhanced to surpass more recent ones, prompting a revisiting of the developments and conclusions from prior works in MedVLP. Our code are available at https://github.com/yangzhou12/BenchX.
Abstract:Community vision screening plays a crucial role in identifying individuals with vision loss and preventing avoidable blindness, particularly in rural communities where access to eye care services is limited. Currently, there is a pressing need for a simple and efficient process to screen and refer individuals with significant eye disease-related vision loss to tertiary eye care centers for further care. An ideal solution should seamlessly and readily integrate with existing workflows, providing comprehensive initial screening results to service providers, thereby enabling precise patient referrals for timely treatment. This paper introduces the Enhancing Community Vision Screening (ECVS) solution, which addresses the aforementioned concerns with a novel and feasible solution based on simple, non-invasive retinal photography for the detection of pathology-based visual impairment. Our study employs four distinct deep learning models: RETinal photo Quality Assessment (RETQA), Pathology Visual Impairment detection (PVI), Eye Disease Diagnosis (EDD) and Visualization of Lesion Regions of the eye (VLR). We conducted experiments on over 10 datasets, totaling more than 80,000 fundus photos collected from various sources. The models integrated into ECVS achieved impressive AUC scores of 0.98 for RETQA, 0.95 for PVI, and 0.90 for EDD, along with a DICE coefficient of 0.48 for VLR. These results underscore the promising capabilities of ECVS as a straightforward and scalable method for community-based vision screening.
Abstract:Large language models (LLMs) have garnered substantial attention due to their promising applications in diverse domains. Nevertheless, the increasing size of LLMs comes with a significant surge in the computational requirements for training and deployment. Memristor crossbars have emerged as a promising solution, which demonstrated a small footprint and remarkably high energy efficiency in computer vision (CV) models. Memristors possess higher density compared to conventional memory technologies, making them highly suitable for effectively managing the extreme model size associated with LLMs. However, deploying LLMs on memristor crossbars faces three major challenges. Firstly, the size of LLMs increases rapidly, already surpassing the capabilities of state-of-the-art memristor chips. Secondly, LLMs often incorporate multi-head attention blocks, which involve non-weight stationary multiplications that traditional memristor crossbars cannot support. Third, while memristor crossbars excel at performing linear operations, they are not capable of executing complex nonlinear operations in LLM such as softmax and layer normalization. To address these challenges, we present a novel architecture for the memristor crossbar that enables the deployment of state-of-the-art LLM on a single chip or package, eliminating the energy and time inefficiencies associated with off-chip communication. Our testing on BERT_Large showed negligible accuracy loss. Compared to traditional memristor crossbars, our architecture achieves enhancements of up to 39X in area overhead and 18X in energy consumption. Compared to modern TPU/GPU systems, our architecture demonstrates at least a 68X reduction in the area-delay product and a significant 69% energy consumption reduction.
Abstract:Large vision language models (VLMs) combine large language models with vision encoders, demonstrating promise across various tasks. However, they often underperform in task-specific applications due to domain gaps between pre-training and fine-tuning. We introduce VITask, a novel framework that enhances task-specific adaptability of VLMs by integrating task-specific models (TSMs). VITask employs three key strategies: exemplar prompting (EP), response distribution alignment (RDA), and contrastive response tuning (CRT) to improve the task-specific performance of VLMs by adjusting their response distributions. EP allows TSM features to guide VLMs, while RDA enables VLMs to adapt without TSMs during inference by learning from exemplar-prompted models. CRT further optimizes the ranking of correct image-response pairs, thereby reducing the risk of generating undesired responses. Experiments on 12 medical diagnosis datasets across 9 imaging modalities show that VITask outperforms both vanilla instruction-tuned VLMs and TSMs, showcasing its ability to integrate complementary features from both models effectively. Additionally, VITask offers practical advantages such as flexible TSM integration and robustness to incomplete instructions, making it a versatile and efficient solution for task-specific VLM tuning. Our code are available at https://github.com/baiyang4/VITask.
Abstract:Retinal foundation models aim to learn generalizable representations from diverse retinal images, facilitating label-efficient model adaptation across various ophthalmic tasks. Despite their success, current retinal foundation models are generally restricted to a single imaging modality, such as Color Fundus Photography (CFP) or Optical Coherence Tomography (OCT), limiting their versatility. Moreover, these models may struggle to fully leverage expert annotations and overlook the valuable domain knowledge essential for domain-specific representation learning. To overcome these limitations, we introduce UrFound, a retinal foundation model designed to learn universal representations from both multimodal retinal images and domain knowledge. UrFound is equipped with a modality-agnostic image encoder and accepts either CFP or OCT images as inputs. To integrate domain knowledge into representation learning, we encode expert annotation in text supervision and propose a knowledge-guided masked modeling strategy for model pre-training. It involves reconstructing randomly masked patches of retinal images while predicting masked text tokens conditioned on the corresponding retinal image. This approach aligns multimodal images and textual expert annotations within a unified latent space, facilitating generalizable and domain-specific representation learning. Experimental results demonstrate that UrFound exhibits strong generalization ability and data efficiency when adapting to various tasks in retinal image analysis. By training on ~180k retinal images, UrFound significantly outperforms the state-of-the-art retinal foundation model trained on up to 1.6 million unlabelled images across 8 public retinal datasets. Our code and data are available at https://github.com/yukkai/UrFound.
Abstract:Black-box tuning has attracted recent attention due to that the structure or inner parameters of advanced proprietary models are not accessible. Proxy-tuning provides a test-time output adjustment for tuning black-box language models. It applies the difference of the output logits before and after tuning a smaller white-box "proxy" model to improve the black-box model. However, this technique serves only as a decoding-time algorithm, leading to an inconsistency between training and testing which potentially limits overall performance. To address this problem, we introduce Consistent Proxy Tuning (CPT), a simple yet effective black-box tuning method. Different from Proxy-tuning, CPT additionally exploits the frozen large black-box model and another frozen small white-box model, ensuring consistency between training-stage optimization objective and test-time proxies. This consistency benefits Proxy-tuning and enhances model performance. Note that our method focuses solely on logit-level computation, which makes it model-agnostic and applicable to any task involving logit classification. Extensive experimental results demonstrate the superiority of our CPT in both black-box tuning of Large Language Models (LLMs) and Vision-Language Models (VLMs) across various datasets. The code is available at https://github.com/chunmeifeng/CPT.
Abstract:The performance of Federated Learning (FL) hinges on the effectiveness of utilizing knowledge from distributed datasets. Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round. This process can cause client drift, especially with significant cross-client data heterogeneity, impacting model performance and convergence of the FL algorithm. To address these challenges, we introduce FedAF, a novel aggregation-free FL algorithm. In this framework, clients collaboratively learn condensed data by leveraging peer knowledge, the server subsequently trains the global model using the condensed data and soft labels received from the clients. FedAF inherently avoids the issue of client drift, enhances the quality of condensed data amid notable data heterogeneity, and improves the global model performance. Extensive numerical studies on several popular benchmark datasets show FedAF surpasses various state-of-the-art FL algorithms in handling label-skew and feature-skew data heterogeneity, leading to superior global model accuracy and faster convergence.
Abstract:Handheld ultrasound devices face usage limitations due to user inexperience and cannot benefit from supervised deep learning without extensive expert annotations. Moreover, the models trained on standard ultrasound device data are constrained by training data distribution and perform poorly when directly applied to handheld device data. In this study, we propose the Training-free Image Style Alignment (TISA) framework to align the style of handheld device data to those of standard devices. The proposed TISA can directly infer handheld device images without extra training and is suited for clinical applications. We show that TISA performs better and more stably in medical detection and segmentation tasks for handheld device data. We further validate TISA as the clinical model for automatic measurements of spinal curvature and carotid intima-media thickness. The automatic measurements agree well with manual measurements made by human experts and the measurement errors remain within clinically acceptable ranges. We demonstrate the potential for TISA to facilitate automatic diagnosis on handheld ultrasound devices and expedite their eventual widespread use.
Abstract:Few-shot Class-Incremental Learning (FSCIL) aims to continuously learn new classes based on very limited training data without forgetting the old ones encountered. Existing studies solely relied on pure visual networks, while in this paper we solved FSCIL by leveraging the Vision-Language model (e.g., CLIP) and propose a simple yet effective framework, named Learning Prompt with Distribution-based Feature Replay (LP-DiF). We observe that simply using CLIP for zero-shot evaluation can substantially outperform the most influential methods. Then, prompt tuning technique is involved to further improve its adaptation ability, allowing the model to continually capture specific knowledge from each session. To prevent the learnable prompt from forgetting old knowledge in the new session, we propose a pseudo-feature replay approach. Specifically, we preserve the old knowledge of each class by maintaining a feature-level Gaussian distribution with a diagonal covariance matrix, which is estimated by the image features of training images and synthesized features generated from a VAE. When progressing to a new session, pseudo-features are sampled from old-class distributions combined with training images of the current session to optimize the prompt, thus enabling the model to learn new knowledge while retaining old knowledge. Experiments on three prevalent benchmarks, i.e., CIFAR100, mini-ImageNet, CUB-200, and two more challenging benchmarks, i.e., SUN-397 and CUB-200$^*$ proposed in this paper showcase the superiority of LP-DiF, achieving new state-of-the-art (SOTA) in FSCIL. Code is publicly available at https://github.com/1170300714/LP-DiF.
Abstract:Albeit progress has been made in Composed Image Retrieval (CIR), we empirically find that a certain percentage of failure retrieval results are not consistent with their relative captions. To address this issue, this work provides a Visual Question Answering (VQA) perspective to boost the performance of CIR. The resulting VQA4CIR is a post-processing approach and can be directly plugged into existing CIR methods. Given the top-C retrieved images by a CIR method, VQA4CIR aims to decrease the adverse effect of the failure retrieval results being inconsistent with the relative caption. To find the retrieved images inconsistent with the relative caption, we resort to the "QA generation to VQA" self-verification pipeline. For QA generation, we suggest fine-tuning LLM (e.g., LLaMA) to generate several pairs of questions and answers from each relative caption. We then fine-tune LVLM (e.g., LLaVA) to obtain the VQA model. By feeding the retrieved image and question to the VQA model, one can find the images inconsistent with relative caption when the answer by VQA is inconsistent with the answer in the QA pair. Consequently, the CIR performance can be boosted by modifying the ranks of inconsistently retrieved images. Experimental results show that our proposed method outperforms state-of-the-art CIR methods on the CIRR and Fashion-IQ datasets.