Abstract:The advent of foundation models (FMs) is transforming medical domain. In ophthalmology, RETFound, a retina-specific FM pre-trained sequentially on 1.4 million natural images and 1.6 million retinal images, has demonstrated high adaptability across clinical applications. Conversely, DINOv2, a general-purpose vision FM pre-trained on 142 million natural images, has shown promise in non-medical domains. However, its applicability to clinical tasks remains underexplored. To address this, we conducted head-to-head evaluations by fine-tuning RETFound and three DINOv2 models (large, base, small) for ocular disease detection and systemic disease prediction tasks, across eight standardized open-source ocular datasets, as well as the Moorfields AlzEye and the UK Biobank datasets. DINOv2-large model outperformed RETFound in detecting diabetic retinopathy (AUROC=0.850-0.952 vs 0.823-0.944, across three datasets, all P<=0.007) and multi-class eye diseases (AUROC=0.892 vs. 0.846, P<0.001). In glaucoma, DINOv2-base model outperformed RETFound (AUROC=0.958 vs 0.940, P<0.001). Conversely, RETFound achieved superior performance over all DINOv2 models in predicting heart failure, myocardial infarction, and ischaemic stroke (AUROC=0.732-0.796 vs 0.663-0.771, all P<0.001). These trends persisted even with 10% of the fine-tuning data. These findings showcase the distinct scenarios where general-purpose and domain-specific FMs excel, highlighting the importance of aligning FM selection with task-specific requirements to optimise clinical performance.
Abstract:Background: RETFound, a self-supervised, retina-specific foundation model (FM), showed potential in downstream applications. However, its comparative performance with traditional deep learning (DL) models remains incompletely understood. This study aimed to evaluate RETFound against three ImageNet-pretrained supervised DL models (ResNet50, ViT-base, SwinV2) in detecting ocular and systemic diseases. Methods: We fine-tuned/trained RETFound and three DL models on full datasets, 50%, 20%, and fixed sample sizes (400, 200, 100 images, with half comprising disease cases; for each DR severity class, 100 and 50 cases were used. Fine-tuned models were tested internally using the SEED (53,090 images) and APTOS-2019 (3,672 images) datasets and externally validated on population-based (BES, CIEMS, SP2, UKBB) and open-source datasets (ODIR-5k, PAPILA, GAMMA, IDRiD, MESSIDOR-2). Model performance was compared using area under the receiver operating characteristic curve (AUC) and Z-tests with Bonferroni correction (P<0.05/3). Interpretation: Traditional DL models are mostly comparable to RETFound for ocular disease detection with large datasets. However, RETFound is superior in systemic disease detection with smaller datasets. These findings offer valuable insights into the respective merits and limitation of traditional models and FMs.
Abstract:Providing high-quality item recall for text queries is crucial in large-scale e-commerce search systems. Current Embedding-based Retrieval Systems (ERS) embed queries and items into a shared low-dimensional space, but uni-modality ERS rely too heavily on textual features, making them unreliable in complex contexts. While multi-modality ERS incorporate various data sources, they often overlook individual preferences for different modalities, leading to suboptimal results. To address these issues, we propose MRSE, a Multi-modality Retrieval System that integrates text, item images, and user preferences through lightweight mixture-of-expert (LMoE) modules to better align features across and within modalities. MRSE also builds user profiles at a multi-modality level and introduces a novel hybrid loss function that enhances consistency and robustness using hard negative sampling. Experiments on a large-scale dataset from Shopee and online A/B testing show that MRSE achieves an 18.9% improvement in offline relevance and a 3.7% gain in online core metrics compared to Shopee's state-of-the-art uni-modality system.
Abstract:Representation learning offers a conduit to elucidate distinctive features within the latent space and interpret the deep models. However, the randomness of lesion distribution and the complexity of low-quality factors in medical images pose great challenges for models to extract key lesion features. Disease diagnosis methods guided by contrastive learning (CL) have shown significant advantages in lesion feature representation. Nevertheless, the effectiveness of CL is highly dependent on the quality of the positive and negative sample pairs. In this work, we propose a clinical-oriented multi-level CL framework that aims to enhance the model's capacity to extract lesion features and discriminate between lesion and low-quality factors, thereby enabling more accurate disease diagnosis from low-quality medical images. Specifically, we first construct multi-level positive and negative pairs to enhance the model's comprehensive recognition capability of lesion features by integrating information from different levels and qualities of medical images. Moreover, to improve the quality of the learned lesion embeddings, we introduce a dynamic hard sample mining method based on self-paced learning. The proposed CL framework is validated on two public medical image datasets, EyeQ and Chest X-ray, demonstrating superior performance compared to other state-of-the-art disease diagnostic methods.
Abstract:Retinal fundus images have been applied for the diagnosis and screening of eye diseases, such as Diabetic Retinopathy (DR) or Diabetic Macular Edema (DME). However, both low-quality fundus images and style inconsistency potentially increase uncertainty in the diagnosis of fundus disease and even lead to misdiagnosis by ophthalmologists. Most of the existing image enhancement methods mainly focus on improving the image quality by leveraging the guidance of high-quality images, which is difficult to be collected in medical applications. In this paper, we tackle image quality enhancement in a fully unsupervised setting, i.e., neither paired images nor high-quality images. To this end, we explore the potential of the self-supervised task for improving the quality of fundus images without the requirement of high-quality reference images. Specifically, we construct multiple patch-wise domains via an auxiliary pre-trained quality assessment network and a style clustering. To achieve robust low-quality image enhancement and address style inconsistency, we formulate two self-supervised domain adaptation tasks to disentangle the features of image content, low-quality factor and style information by exploring intrinsic supervision signals within the low-quality images. Extensive experiments are conducted on EyeQ and Messidor datasets, and results show that our DASQE method achieves new state-of-the-art performance when only low-quality images are available.