Michael Pokorny
Abstract:While Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities for reasoning and self-correction at the textual level, these strengths provide minimal benefits for complex tasks centered on visual perception, such as Chart Parsing. Existing models often struggle with visually dense charts, leading to errors like data omission, misalignment, and hallucination. Inspired by the human strategy of using a finger as a ``visual anchor'' to ensure accuracy when reading complex charts, we propose a new paradigm named Visual Self-Refine (VSR). The core idea of VSR is to enable a model to generate pixel-level localization outputs, visualize them, and then feed these visualizations back to itself, allowing it to intuitively inspect and correct its own potential visual perception errors. We instantiate the VSR paradigm in the domain of Chart Parsing by proposing ChartVSR. This model decomposes the parsing process into two stages: a Refine Stage, where it iteratively uses visual feedback to ensure the accuracy of all data points' Pixel-level Localizations, and a Decode Stage, where it uses these verified localizations as precise visual anchors to parse the final structured data. To address the limitations of existing benchmarks, we also construct ChartP-Bench, a new and highly challenging benchmark for chart parsing. Our work also highlights VSR as a general-purpose visual feedback mechanism, offering a promising new direction for enhancing accuracy on a wide range of vision-centric tasks.
Abstract:Current unified multimodal models for image generation and editing typically rely on massive parameter scales (e.g., >10B), entailing prohibitive training costs and deployment footprints. In this work, we present DeepGen 1.0, a lightweight 5B unified model that achieves comprehensive capabilities competitive with or surpassing much larger counterparts. To overcome the limitations of compact models in semantic understanding and fine-grained control, we introduce Stacked Channel Bridging (SCB), a deep alignment framework that extracts hierarchical features from multiple VLM layers and fuses them with learnable 'think tokens' to provide the generative backbone with structured, reasoning-rich guidance. We further design a data-centric training strategy spanning three progressive stages: (1) Alignment Pre-training on large-scale image-text pairs and editing triplets to synchronize VLM and DiT representations, (2) Joint Supervised Fine-tuning on a high-quality mixture of generation, editing, and reasoning tasks to foster omni-capabilities, and (3) Reinforcement Learning with MR-GRPO, which leverages a mixture of reward functions and supervision signals, resulting in substantial gains in generation quality and alignment with human preferences, while maintaining stable training progress and avoiding visual artifacts. Despite being trained on only ~50M samples, DeepGen 1.0 achieves leading performance across diverse benchmarks, surpassing the 80B HunyuanImage by 28% on WISE and the 27B Qwen-Image-Edit by 37% on UniREditBench. By open-sourcing our training code, weights, and datasets, we provide an efficient, high-performance alternative to democratize unified multimodal research.
Abstract:Large audio language models are increasingly used for complex audio understanding tasks, but they struggle with temporal tasks that require precise temporal grounding, such as word alignment and speaker diarization. The standard approach, where we generate timestamps as sequences of text tokens, is computationally expensive and prone to hallucination, especially when processing audio lengths outside the model's training distribution. In this work, we propose frame-level internal tool use, a method that trains audio LMs to use their own internal audio representations to perform temporal grounding directly. We introduce a lightweight prediction mechanism trained via two objectives: a binary frame classifier and a novel inhomogeneous Poisson process (IHP) loss that models temporal event intensity. Across word localization, speaker diarization, and event localization tasks, our approach outperforms token-based baselines. Most notably, it achieves a >50x inference speedup and demonstrates robust length generalization, maintaining high accuracy on out-of-distribution audio durations where standard token-based models collapse completely.
Abstract:Despite the growing video understanding capabilities of recent Multimodal Large Language Models (MLLMs), existing video benchmarks primarily assess understanding based on models' static, internal knowledge, rather than their ability to learn and adapt from dynamic, novel contexts from few examples. To bridge this gap, we present Demo-driven Video In-Context Learning, a novel task focused on learning from in-context demonstrations to answer questions about the target videos. Alongside this, we propose Demo-ICL-Bench, a challenging benchmark designed to evaluate demo-driven video in-context learning capabilities. Demo-ICL-Bench is constructed from 1200 instructional YouTube videos with associated questions, from which two types of demonstrations are derived: (i) summarizing video subtitles for text demonstration; and (ii) corresponding instructional videos as video demonstrations. To effectively tackle this new challenge, we develop Demo-ICL, an MLLM with a two-stage training strategy: video-supervised fine-tuning and information-assisted direct preference optimization, jointly enhancing the model's ability to learn from in-context examples. Extensive experiments with state-of-the-art MLLMs confirm the difficulty of Demo-ICL-Bench, demonstrate the effectiveness of Demo-ICL, and thereby unveil future research directions.
Abstract:The rapid advancement of visual generation models has outpaced traditional evaluation approaches, necessitating the adoption of Vision-Language Models as surrogate judges. In this work, we systematically investigate the reliability of the prevailing absolute pointwise scoring standard, across a wide spectrum of visual generation tasks. Our analysis reveals that this paradigm is limited due to stochastic inconsistency and poor alignment with human perception. To resolve these limitations, we introduce GenArena, a unified evaluation framework that leverages a pairwise comparison paradigm to ensure stable and human-aligned evaluation. Crucially, our experiments uncover a transformative finding that simply adopting this pairwise protocol enables off-the-shelf open-source models to outperform top-tier proprietary models. Notably, our method boosts evaluation accuracy by over 20% and achieves a Spearman correlation of 0.86 with the authoritative LMArena leaderboard, drastically surpassing the 0.36 correlation of pointwise methods. Based on GenArena, we benchmark state-of-the-art visual generation models across diverse tasks, providing the community with a rigorous and automated evaluation standard for visual generation.
Abstract:Recent advancements in multimodal reward models (RMs) have significantly propelled the development of visual generation. Existing frameworks typically adopt Bradley-Terry-style preference modeling or leverage generative VLMs as judges, and subsequently optimize visual generation models via reinforcement learning. However, current RMs suffer from inherent limitations: they often follow a one-size-fits-all paradigm that assumes a monolithic preference distribution or relies on fixed evaluation rubrics. As a result, they are insensitive to content-specific visual cues, leading to systematic misalignment with subjective and context-dependent human preferences. To this end, inspired by human assessment, we propose UnifiedReward-Flex, a unified personalized reward model for vision generation that couples reward modeling with flexible and context-adaptive reasoning. Specifically, given a prompt and the generated visual content, it first interprets the semantic intent and grounds on visual evidence, then dynamically constructs a hierarchical assessment by instantiating fine-grained criteria under both predefined and self-generated high-level dimensions. Our training pipeline follows a two-stage process: (1) we first distill structured, high-quality reasoning traces from advanced closed-source VLMs to bootstrap SFT, equipping the model with flexible and context-adaptive reasoning behaviors; (2) we then perform direct preference optimization (DPO) on carefully curated preference pairs to further strengthen reasoning fidelity and discriminative alignment. To validate the effectiveness, we integrate UnifiedReward-Flex into the GRPO framework for image and video synthesis, and extensive results demonstrate its superiority.
Abstract:Unified multimodal models often struggle with complex synthesis tasks that demand deep reasoning, and typically treat text-to-image generation and image editing as isolated capabilities rather than interconnected reasoning steps. To address this, we propose UniReason, a unified framework that harmonizes these two tasks through a dual reasoning paradigm. We formulate generation as world knowledge-enhanced planning to inject implicit constraints, and leverage editing capabilities for fine-grained visual refinement to further correct visual errors via self-reflection. This approach unifies generation and editing within a shared representation, mirroring the human cognitive process of planning followed by refinement. We support this framework by systematically constructing a large-scale reasoning-centric dataset (~300k samples) covering five major knowledge domains (e.g., cultural commonsense, physics, etc.) for planning, alongside an agent-generated corpus for visual self-correction. Extensive experiments demonstrate that UniReason achieves advanced performance on reasoning-intensive benchmarks such as WISE, KrisBench and UniREditBench, while maintaining superior general synthesis capabilities.
Abstract:Advances in single-cell RNA sequencing enable the rapid generation of massive, high-dimensional datasets, yet the accumulation of data across experiments introduces batch effects that obscure true biological signals. Existing batch correction approaches either insufficiently correct batch effects or require centralized retraining on the complete dataset, limiting their applicability in distributed and continually evolving single-cell data settings. We introduce scBatchProx, a post-hoc optimization method inspired by federated learning principles for refining cell-level embeddings produced by arbitrary upstream methods. Treating each batch as a client, scBatchProx learns batch-conditioned adapters under proximal regularization, correcting batch structure directly in latent space without requiring raw expression data or centralized optimization. The method is lightweight and deployable, optimizing batch-specific adapter parameters only. Extensive experiments show that scBatchProx consistently yields relative gains of approximately 3-8% in overall embedding quality, with batch correction and biological conservation improving in 90% and 85% of data-method pairs, respectively. We envision this work as a step toward the practical refinement of learned representations in dynamic single-cell data systems.
Abstract:Training a unified language model that adapts between intuitive System 1 and deliberative System 2 remains challenging due to interference between their cognitive modes. Recent studies have thus pursued making System 2 models more efficient. However, these approaches focused on output control, limiting what models produce. We argue that this paradigm is misaligned: output length is merely a symptom of the model's cognitive configuration, not the root cause. In this work, we shift the focus to capability control, which modulates \textit{how models think} rather than \textit{what they produce}. To realize this, we leverage existing Instruct and Thinking checkpoints through dynamic parameter interpolation, without additional training. Our pilot study establishes that linear interpolation yields a convex, monotonic Pareto frontier, underpinned by representation continuity and structural connectivity. Building on this, we propose \textbf{DAMI} (\textbf{D}yn\textbf{A}mic \textbf{M}odel \textbf{I}nterpolation), a framework that estimates a query-specific Reasoning Intensity $λ(q)$ to configure cognitive depth. For training-based estimation, we develop a preference learning method encoding accuracy and efficiency criteria. For zero-shot deployment, we introduce a confidence-based method leveraging inter-model cognitive discrepancy. Experiments on five mathematical reasoning benchmarks demonstrate that DAMI achieves higher accuracy than the Thinking model while remaining efficient, effectively combining the efficiency of System 1 with the reasoning depth of System 2.
Abstract:Visual Question Answering (VQA) often requires coupling fine-grained perception with factual knowledge beyond the input image. Prior multimodal Retrieval-Augmented Generation (MM-RAG) systems improve factual grounding but lack an internal policy for when and how to retrieve. We propose PixSearch, the first end-to-end Segmenting Large Multimodal Model (LMM) that unifies region-level perception and retrieval-augmented reasoning. During encoding, PixSearch emits <search> tokens to trigger retrieval, selects query modalities (text, image, or region), and generates pixel-level masks that directly serve as visual queries, eliminating the reliance on modular pipelines (detectors, segmenters, captioners, etc.). A two-stage supervised fine-tuning regimen with search-interleaved supervision teaches retrieval timing and query selection while preserving segmentation ability. On egocentric and entity-centric VQA benchmarks, PixSearch substantially improves factual consistency and generalization, yielding a 19.7% relative gain in accuracy on CRAG-MM compared to whole image retrieval, while retaining competitive reasoning performance on various VQA and text-only QA tasks.