Abstract:Linguistic steganography enables covert communication through embedding secret messages into innocuous texts; however, current methods face critical limitations in payload capacity and security. Traditional modification-based methods introduce detectable anomalies, while retrieval-based strategies suffer from low embedding capacity. Modern generative steganography leverages language models to generate natural stego text but struggles with limited entropy in token predictions, further constraining capacity. To address these issues, we propose an entropy-driven framework called RTMStega that integrates rank-based adaptive coding and context-aware decompression with normalized entropy. By mapping secret messages to token probability ranks and dynamically adjusting sampling via context-aware entropy-based adjustments, RTMStega achieves a balance between payload capacity and imperceptibility. Experiments across diverse datasets and models demonstrate that RTMStega triples the payload capacity of mainstream generative steganography, reduces processing time by over 50%, and maintains high text quality, offering a trustworthy solution for secure and efficient covert communication.
Abstract:Diffusion models have advanced rapidly in recent years, producing high-fidelity images while raising concerns about intellectual property protection and the misuse of generative AI. Image watermarking for diffusion models, particularly Noise-as-Watermark (NaW) methods, encode watermark as specific standard Gaussian noise vector for image generation, embedding the infomation seamlessly while maintaining image quality. For detection, the generation process is inverted to recover the initial noise vector containing the watermark before extraction. However, existing NaW methods struggle to balance watermark robustness with generation diversity. Some methods achieve strong robustness by heavily constraining initial noise sampling, which degrades user experience, while others preserve diversity but prove too fragile for real-world deployment. To address this issue, we propose T2SMark, a two-stage watermarking scheme based on Tail-Truncated Sampling (TTS). Unlike prior methods that simply map bits to positive or negative values, TTS enhances robustness by embedding bits exclusively in the reliable tail regions while randomly sampling the central zone to preserve the latent distribution. Our two-stage framework then ensures sampling diversity by integrating a randomly generated session key into both encryption pipelines. We evaluate T2SMark on diffusion models with both U-Net and DiT backbones. Extensive experiments show that it achieves an optimal balance between robustness and diversity. Our code is available at \href{https://github.com/0xD009/T2SMark}{https://github.com/0xD009/T2SMark}.
Abstract:The rapid development of deepfake generation techniques necessitates robust face forgery detection algorithms. While methods based on Convolutional Neural Networks (CNNs) and Transformers are effective, there is still room for improvement in modeling the highly complex and non-linear nature of forgery artifacts. To address this issue, we propose a novel detection method based on the Kolmogorov-Arnold Network (KAN). By replacing fixed activation functions with learnable splines, our KAN-based approach is better suited to this challenge. Furthermore, to guide the network's focus towards critical facial areas, we introduce a Landmark-assisted Adaptive Kolmogorov-Arnold Network (LAKAN) module. This module uses facial landmarks as a structural prior to dynamically generate the internal parameters of the KAN, creating an instance-specific signal that steers a general-purpose image encoder towards the most informative facial regions with artifacts. This core innovation creates a powerful combination between geometric priors and the network's learning process. Extensive experiments on multiple public datasets show that our proposed method achieves superior performance.
Abstract:The rapid advancement of speech generation models has heightened privacy and security concerns related to voice cloning (VC). Recent studies have investigated disrupting unauthorized voice cloning by introducing adversarial perturbations. However, determined attackers can mitigate these protective perturbations and successfully execute VC. In this study, we conduct the first systematic evaluation of these protective perturbations against VC under realistic threat models that include perturbation purification. Our findings reveal that while existing purification methods can neutralize a considerable portion of the protective perturbations, they still lead to distortions in the feature space of VC models, which degrades the performance of VC. From this perspective, we propose a novel two-stage purification method: (1) Purify the perturbed speech; (2) Refine it using phoneme guidance to align it with the clean speech distribution. Experimental results demonstrate that our method outperforms state-of-the-art purification methods in disrupting VC defenses. Our study reveals the limitations of adversarial perturbation-based VC defenses and underscores the urgent need for more robust solutions to mitigate the security and privacy risks posed by VC. The code and audio samples are available at https://de-antifake.github.io.
Abstract:This paper presents ScaleCap, an inference-time scalable image captioning strategy that generates comprehensive and detailed image captions. The key challenges of high-quality image captioning lie in the inherent biases of LVLMs: multimodal bias resulting in imbalanced descriptive granularity, offering detailed accounts of some elements while merely skimming over others; linguistic bias leading to hallucinated descriptions of non-existent objects. To address these issues, we propose a scalable debiased captioning strategy, which continuously enriches and calibrates the caption with increased inference budget. Specifically, we propose two novel components: heuristic question answering and contrastive sentence rating. The former generates content-specific questions based on the image and answers them to progressively inject relevant information into the caption. The latter employs sentence-level offline contrastive decoding to effectively identify and eliminate hallucinations caused by linguistic biases. With increased inference cost, more heuristic questions are raised by ScaleCap to progressively capture additional visual details, generating captions that are more accurate, balanced, and informative. Extensive modality alignment experiments demonstrate the effectiveness of ScaleCap. Annotating 450K images with ScaleCap and using them for LVLM pretraining leads to consistent performance gains across 11 widely used benchmarks. Furthermore, ScaleCap showcases superb richness and fidelity of generated captions with two additional tasks: replacing images with captions in VQA task, and reconstructing images from captions to assess semantic coverage. Code is available at https://github.com/Cooperx521/ScaleCap.
Abstract:Large Language Models (\textbf{LLMs}), e.g. ChatGPT, have been widely adopted in real-world dialogue applications. However, LLMs' robustness, especially in handling long complex dialogue sessions, including frequent motivation transfer, sophisticated cross-turn dependency, is criticized all along. Nevertheless, no existing benchmarks can fully reflect these weaknesses. We present \textbf{MARS-Bench}, a \textbf{M}ulti-turn \textbf{A}thletic \textbf{R}eal-world \textbf{S}cenario Dialogue \textbf{Bench}mark, designed to remedy the gap. MARS-Bench is constructed from play-by-play text commentary so to feature realistic dialogues specifically designed to evaluate three critical aspects of multi-turn conversations: Ultra Multi-turn, Interactive Multi-turn, and Cross-turn Tasks. Extensive experiments on MARS-Bench also reveal that closed-source LLMs significantly outperform open-source alternatives, explicit reasoning significantly boosts LLMs' robustness on handling long complex dialogue sessions, and LLMs indeed face significant challenges when handling motivation transfer and sophisticated cross-turn dependency. Moreover, we provide mechanistic interpretability on how attention sinks due to special tokens lead to LLMs' performance degradation when handling long complex dialogue sessions based on attention visualization experiment in Qwen2.5-7B-Instruction.
Abstract:Ethical concerns surrounding copyright protection and inappropriate content generation pose challenges for the practical implementation of diffusion models. One effective solution involves watermarking the generated images. Existing methods primarily focus on ensuring that watermark embedding does not degrade the model performance. However, they often overlook critical challenges in real-world deployment scenarios, such as the complexity of watermark key management, user-defined generation parameters, and the difficulty of verification by arbitrary third parties. To address this issue, we propose Gaussian Shading++, a diffusion model watermarking method tailored for real-world deployment. We propose a double-channel design that leverages pseudorandom error-correcting codes to encode the random seed required for watermark pseudorandomization, achieving performance-lossless watermarking under a fixed watermark key and overcoming key management challenges. Additionally, we model the distortions introduced during generation and inversion as an additive white Gaussian noise channel and employ a novel soft decision decoding strategy during extraction, ensuring strong robustness even when generation parameters vary. To enable third-party verification, we incorporate public key signatures, which provide a certain level of resistance against forgery attacks even when model inversion capabilities are fully disclosed. Extensive experiments demonstrate that Gaussian Shading++ not only maintains performance losslessness but also outperforms existing methods in terms of robustness, making it a more practical solution for real-world deployment.
Abstract:Large-scale image retrieval using deep hashing has become increasingly popular due to the exponential growth of image data and the remarkable feature extraction capabilities of deep neural networks (DNNs). However, deep hashing methods are vulnerable to malicious attacks, including adversarial and backdoor attacks. It is worth noting that these attacks typically involve altering the query images, which is not a practical concern in real-world scenarios. In this paper, we point out that even clean query images can be dangerous, inducing malicious target retrieval results, like undesired or illegal images. To the best of our knowledge, we are the first to study data \textbf{p}oisoning \textbf{a}ttacks against \textbf{d}eep \textbf{hash}ing \textbf{(\textit{PADHASH})}. Specifically, we first train a surrogate model to simulate the behavior of the target deep hashing model. Then, a strict gradient matching strategy is proposed to generate the poisoned images. Extensive experiments on different models, datasets, hash methods, and hash code lengths demonstrate the effectiveness and generality of our attack method.
Abstract:Malicious image manipulation poses societal risks, increasing the importance of effective image manipulation detection methods. Recent approaches in image manipulation detection have largely been driven by fully supervised approaches, which require labor-intensive pixel-level annotations. Thus, it is essential to explore weakly supervised image manipulation localization methods that only require image-level binary labels for training. However, existing weakly supervised image manipulation methods overlook the importance of edge information for accurate localization, leading to suboptimal localization performance. To address this, we propose a Context-Aware Boundary Localization (CABL) module to aggregate boundary features and learn context-inconsistency for localizing manipulated areas. Furthermore, by leveraging Class Activation Mapping (CAM) and Segment Anything Model (SAM), we introduce the CAM-Guided SAM Refinement (CGSR) module to generate more accurate manipulation localization maps. By integrating two modules, we present a novel weakly supervised framework based on a dual-branch Transformer-CNN architecture. Our method achieves outstanding localization performance across multiple datasets.




Abstract:Retrieval-Augmented Generation (RAG) improves Large Language Models (LLMs) by using external knowledge, but it struggles with precise entity information retrieval. In this paper, we proposed MES-RAG framework, which enhances entity-specific query handling and provides accurate, secure, and consistent responses. MES-RAG introduces proactive security measures that ensure system integrity by applying protections prior to data access. Additionally, the system supports real-time multi-modal outputs, including text, images, audio, and video, seamlessly integrating into existing RAG architectures. Experimental results demonstrate that MES-RAG significantly improves both accuracy and recall, highlighting its effectiveness in advancing the security and utility of question-answering, increasing accuracy to 0.83 (+0.25) on targeted task. Our code and data are available at https://github.com/wpydcr/MES-RAG.