Abstract:As speech translation (ST) systems become increasingly prevalent, understanding their vulnerabilities is crucial for ensuring robust and reliable communication. However, limited work has explored this issue in depth. This paper explores methods of compromising these systems through imperceptible audio manipulations. Specifically, we present two innovative approaches: (1) the injection of perturbation into source audio, and (2) the generation of adversarial music designed to guide targeted translation, while also conducting more practical over-the-air attacks in the physical world. Our experiments reveal that carefully crafted audio perturbations can mislead translation models to produce targeted, harmful outputs, while adversarial music achieve this goal more covertly, exploiting the natural imperceptibility of music. These attacks prove effective across multiple languages and translation models, highlighting a systemic vulnerability in current ST architectures. The implications of this research extend beyond immediate security concerns, shedding light on the interpretability and robustness of neural speech processing systems. Our findings underscore the need for advanced defense mechanisms and more resilient architectures in the realm of audio systems. More details and samples can be found at https://adv-st.github.io.
Abstract:Masterminds are entities organizing, coordinating, and orchestrating cryptocurrency pump-and-dump schemes, a form of trade-based manipulation undermining market integrity and causing financial losses for unwitting investors. Previous research detects pump-and-dump activities in the market, predicts the target cryptocurrency, and examines investors and \ac{osn} entities. However, these solutions do not address the root cause of the problem. There is a critical gap in identifying and tracing the masterminds involved in these schemes. In this research, we develop a detection system \textsc{Perseus}, which collects real-time data from the \acs{osn} and cryptocurrency markets. \textsc{Perseus} then constructs temporal attributed graphs that preserve the direction of information diffusion and the structure of the community while leveraging \ac{gnn} to identify the masterminds behind pump-and-dump activities. Our design of \textsc{Perseus} leads to higher F1 scores and precision than the \ac{sota} fraud detection method, achieving fast training and inferring speeds. Deployed in the real world from February 16 to October 9 2024, \textsc{Perseus} successfully detects $438$ masterminds who are efficient in the pump-and-dump information diffusion networks. \textsc{Perseus} provides regulators with an explanation of the risks of masterminds and oversight capabilities to mitigate the pump-and-dump schemes of cryptocurrency.
Abstract:Transfer learning, successful in knowledge translation across related tasks, faces a substantial privacy threat from membership inference attacks (MIAs). These attacks, despite posing significant risk to ML model's training data, remain limited-explored in transfer learning. The interaction between teacher and student models in transfer learning has not been thoroughly explored in MIAs, potentially resulting in an under-examined aspect of privacy vulnerabilities within transfer learning. In this paper, we propose a new MIA vector against transfer learning, to determine whether a specific data point was used to train the teacher model while only accessing the student model in a white-box setting. Our method delves into the intricate relationship between teacher and student models, analyzing the discrepancies in hidden layer representations between the student model and its shadow counterpart. These identified differences are then adeptly utilized to refine the shadow model's training process and to inform membership inference decisions effectively. Our method, evaluated across four datasets in diverse transfer learning tasks, reveals that even when an attacker only has access to the student model, the teacher model's training data remains susceptible to MIAs. We believe our work unveils the unexplored risk of membership inference in transfer learning.
Abstract:The proliferation of Internet of Things (IoT) devices and the advent of 6G technologies have introduced computationally intensive tasks that often surpass the processing capabilities of user devices. Efficient and secure resource allocation in serverless multi-cloud edge computing environments is essential for supporting these demands and advancing distributed computing. However, existing solutions frequently struggle with the complexity of multi-cloud infrastructures, robust security integration, and effective application of traditional deep reinforcement learning (DRL) techniques under system constraints. To address these challenges, we present SARMTO, a novel framework that integrates an action-constrained DRL model. SARMTO dynamically balances resource allocation, task offloading, security, and performance by utilizing a Markov decision process formulation, an adaptive security mechanism, and sophisticated optimization techniques. Extensive simulations across varying scenarios, including different task loads, data sizes, and MEC capacities, show that SARMTO consistently outperforms five baseline approaches, achieving up to a 40% reduction in system costs and a 41.5% improvement in energy efficiency over state-of-the-art methods. These enhancements highlight SARMTO's potential to revolutionize resource management in intricate distributed computing environments, opening the door to more efficient and secure IoT and edge computing applications.
Abstract:Recently, the increasing deployment of LEO satellite systems has enabled various space analytics (e.g., crop and climate monitoring), which heavily relies on the advancements in deep learning (DL). However, the intermittent connectivity between LEO satellites and ground station (GS) significantly hinders the timely transmission of raw data to GS for centralized learning, while the scaled-up DL models hamper distributed learning on resource-constrained LEO satellites. Though split learning (SL) can be a potential solution to these problems by partitioning a model and offloading primary training workload to GS, the labor-intensive labeling process remains an obstacle, with intermittent connectivity and data heterogeneity being other challenges. In this paper, we propose LEO-Split, a semi-supervised (SS) SL design tailored for satellite networks to combat these challenges. Leveraging SS learning to handle (labeled) data scarcity, we construct an auxiliary model to tackle the training failure of the satellite-GS non-contact time. Moreover, we propose a pseudo-labeling algorithm to rectify data imbalances across satellites. Lastly, an adaptive activation interpolation scheme is devised to prevent the overfitting of server-side sub-model training at GS. Extensive experiments with real-world LEO satellite traces (e.g., Starlink) demonstrate that our LEO-Split framework achieves superior performance compared to state-ofthe-art benchmarks.
Abstract:The shared topology of human skeletons motivated the recent investigation of graph convolutional network (GCN) solutions for action recognition. However, the existing GCNs rely on the binary connection of two neighbouring vertices (joints) formed by an edge (bone), overlooking the potential of constructing multi-vertex convolution structures. In this paper we address this oversight and explore the merits of a hyper-graph convolutional network (Hyper-GCN) to achieve the aggregation of rich semantic information conveyed by skeleton vertices. In particular, our Hyper-GCN adaptively optimises multi-scale hyper-graphs during training, revealing the action-driven multi-vertex relations. Besides, virtual connections are often designed to support efficient feature aggregation, implicitly extending the spectrum of dependencies within the skeleton. By injecting virtual connections into hyper-graphs, the semantic clues of diverse action categories can be highlighted. The results of experiments conducted on the NTU-60, NTU-120, and NW-UCLA datasets, demonstrate the merits of our Hyper-GCN, compared to the state-of-the-art methods. Specifically, we outperform the existing solutions on NTU-120, achieving 90.2\% and 91.4\% in terms of the top-1 recognition accuracy on X-Sub and X-Set.
Abstract:The rapid expansion of Internet of Things (IoT) has resulted in vast, heterogeneous graphs that capture complex interactions among devices, sensors, and systems. Efficient analysis of these graphs is critical for deriving insights in IoT scenarios such as smart cities, industrial IoT, and intelligent transportation systems. However, the scale and diversity of IoT-generated data present significant challenges, and existing methods often struggle with preserving the structural integrity and semantic richness of these complex graphs. Many current approaches fail to maintain the balance between computational efficiency and the quality of the insights generated, leading to potential loss of critical information necessary for accurate decision-making in IoT applications. We introduce HeteroSample, a novel sampling method designed to address these challenges by preserving the structural integrity, node and edge type distributions, and semantic patterns of IoT-related graphs. HeteroSample works by incorporating the novel top-leader selection, balanced neighborhood expansion, and meta-path guided sampling strategies. The key idea is to leverage the inherent heterogeneous structure and semantic relationships encoded by meta-paths to guide the sampling process. This approach ensures that the resulting subgraphs are representative of the original data while significantly reducing computational overhead. Extensive experiments demonstrate that HeteroSample outperforms state-of-the-art methods, achieving up to 15% higher F1 scores in tasks such as link prediction and node classification, while reducing runtime by 20%.These advantages make HeteroSample a transformative tool for scalable and accurate IoT applications, enabling more effective and efficient analysis of complex IoT systems, ultimately driving advancements in smart cities, industrial IoT, and beyond.
Abstract:In the rapidly evolving domain of satellite communications, integrating advanced machine learning techniques, particularly split learning, is crucial for enhancing data processing and model training efficiency across satellites, space stations, and ground stations. Traditional ML approaches often face significant challenges within satellite networks due to constraints such as limited bandwidth and computational resources. To address this gap, we propose a novel framework for more efficient SL in satellite communications. Our approach, Dynamic Topology Informed Pruning, namely DTIP, combines differential privacy with graph and model pruning to optimize graph neural networks for distributed learning. DTIP strategically applies differential privacy to raw graph data and prunes GNNs, thereby optimizing both model size and communication load across network tiers. Extensive experiments across diverse datasets demonstrate DTIP's efficacy in enhancing privacy, accuracy, and computational efficiency. Specifically, on Amazon2M dataset, DTIP maintains an accuracy of 0.82 while achieving a 50% reduction in floating-point operations per second. Similarly, on ArXiv dataset, DTIP achieves an accuracy of 0.85 under comparable conditions. Our framework not only significantly improves the operational efficiency of satellite communications but also establishes a new benchmark in privacy-aware distributed learning, potentially revolutionizing data handling in space-based networks.
Abstract:Deep neural networks (DNNs) are increasingly used in critical applications such as identity authentication and autonomous driving, where robustness against adversarial attacks is crucial. These attacks can exploit minor perturbations to cause significant prediction errors, making it essential to enhance the resilience of DNNs. Traditional defense methods often rely on access to detailed model information, which raises privacy concerns, as model owners may be reluctant to share such data. In contrast, existing black-box defense methods fail to offer a universal defense against various types of adversarial attacks. To address these challenges, we introduce DUCD, a universal black-box defense method that does not require access to the target model's parameters or architecture. Our approach involves distilling the target model by querying it with data, creating a white-box surrogate while preserving data privacy. We further enhance this surrogate model using a certified defense based on randomized smoothing and optimized noise selection, enabling robust defense against a broad range of adversarial attacks. Comparative evaluations between the certified defenses of the surrogate and target models demonstrate the effectiveness of our approach. Experiments on multiple image classification datasets show that DUCD not only outperforms existing black-box defenses but also matches the accuracy of white-box defenses, all while enhancing data privacy and reducing the success rate of membership inference attacks.
Abstract:The integration of Voice Control Systems (VCS) into smart devices and their growing presence in daily life accentuate the importance of their security. Current research has uncovered numerous vulnerabilities in VCS, presenting significant risks to user privacy and security. However, a cohesive and systematic examination of these vulnerabilities and the corresponding solutions is still absent. This lack of comprehensive analysis presents a challenge for VCS designers in fully understanding and mitigating the security issues within these systems. Addressing this gap, our study introduces a hierarchical model structure for VCS, providing a novel lens for categorizing and analyzing existing literature in a systematic manner. We classify attacks based on their technical principles and thoroughly evaluate various attributes, such as their methods, targets, vectors, and behaviors. Furthermore, we consolidate and assess the defense mechanisms proposed in current research, offering actionable recommendations for enhancing VCS security. Our work makes a significant contribution by simplifying the complexity inherent in VCS security, aiding designers in effectively identifying and countering potential threats, and setting a foundation for future advancements in VCS security research.