Abstract:Existing knowledge distillation (KD) methods have demonstrated their ability in achieving student network performance on par with their teachers. However, the knowledge gap between the teacher and student remains significant and may hinder the effectiveness of the distillation process. In this work, we introduce the structure of Neural Collapse (NC) into the KD framework. NC typically occurs in the final phase of training, resulting in a graceful geometric structure where the last-layer features form a simplex equiangular tight frame. Such phenomenon has improved the generalization of deep network training. We hypothesize that NC can also alleviate the knowledge gap in distillation, thereby enhancing student performance. This paper begins with an empirical analysis to bridge the connection between knowledge distillation and neural collapse. Through this analysis, we establish that transferring the teacher's NC structure to the student benefits the distillation process. Therefore, instead of merely transferring instance-level logits or features, as done by existing distillation methods, we encourage students to learn the teacher's NC structure. Thereby, we propose a new distillation paradigm termed Neural Collapse-inspired Knowledge Distillation (NCKD). Comprehensive experiments demonstrate that NCKD is simple yet effective, improving the generalization of all distilled student models and achieving state-of-the-art accuracy performance.
Abstract:The application of language models (LMs) to molecular structure generation using line notations such as SMILES and SELFIES has been well-established in the field of cheminformatics. However, extending these models to generate 3D molecular structures presents significant challenges. Two primary obstacles emerge: (1) the difficulty in designing a 3D line notation that ensures SE(3)-invariant atomic coordinates, and (2) the non-trivial task of tokenizing continuous coordinates for use in LMs, which inherently require discrete inputs. To address these challenges, we propose Mol-StrucTok, a novel method for tokenizing 3D molecular structures. Our approach comprises two key innovations: (1) We design a line notation for 3D molecules by extracting local atomic coordinates in a spherical coordinate system. This notation builds upon existing 2D line notations and remains agnostic to their specific forms, ensuring compatibility with various molecular representation schemes. (2) We employ a Vector Quantized Variational Autoencoder (VQ-VAE) to tokenize these coordinates, treating them as generation descriptors. To further enhance the representation, we incorporate neighborhood bond lengths and bond angles as understanding descriptors. Leveraging this tokenization framework, we train a GPT-2 style model for 3D molecular generation tasks. Results demonstrate strong performance with significantly faster generation speeds and competitive chemical stability compared to previous methods. Further, by integrating our learned discrete representations into Graphormer model for property prediction on QM9 dataset, Mol-StrucTok reveals consistent improvements across various molecular properties, underscoring the versatility and robustness of our approach.
Abstract:Deep neural networks (DNNs) are increasingly used in critical applications such as identity authentication and autonomous driving, where robustness against adversarial attacks is crucial. These attacks can exploit minor perturbations to cause significant prediction errors, making it essential to enhance the resilience of DNNs. Traditional defense methods often rely on access to detailed model information, which raises privacy concerns, as model owners may be reluctant to share such data. In contrast, existing black-box defense methods fail to offer a universal defense against various types of adversarial attacks. To address these challenges, we introduce DUCD, a universal black-box defense method that does not require access to the target model's parameters or architecture. Our approach involves distilling the target model by querying it with data, creating a white-box surrogate while preserving data privacy. We further enhance this surrogate model using a certified defense based on randomized smoothing and optimized noise selection, enabling robust defense against a broad range of adversarial attacks. Comparative evaluations between the certified defenses of the surrogate and target models demonstrate the effectiveness of our approach. Experiments on multiple image classification datasets show that DUCD not only outperforms existing black-box defenses but also matches the accuracy of white-box defenses, all while enhancing data privacy and reducing the success rate of membership inference attacks.
Abstract:Recent studies emphasize the crucial role of data augmentation in enhancing the performance of object detection models. However,existing methodologies often struggle to effectively harmonize dataset diversity with semantic coordination.To bridge this gap, we introduce an innovative augmentation technique leveraging pre-trained conditional diffusion models to mediate this balance. Our approach encompasses the development of a Category Affinity Matrix, meticulously designed to enhance dataset diversity, and a Surrounding Region Alignment strategy, which ensures the preservation of semantic coordination in the augmented images. Extensive experimental evaluations confirm the efficacy of our method in enriching dataset diversity while seamlessly maintaining semantic coordination. Our method yields substantial average improvements of +1.4AP, +0.9AP, and +3.4AP over existing alternatives on three distinct object detection models, respectively.
Abstract:Recently, the emerging graph Transformers have made significant advancements for node classification on graphs. In most graph Transformers, a crucial step involves transforming the input graph into token sequences as the model input, enabling Transformer to effectively learn the node representations. However, we observe that existing methods only express partial graph information of nodes through single-type token generation. Consequently, they require tailored strategies to encode additional graph-specific features into the Transformer to ensure the quality of node representation learning, limiting the model flexibility to handle diverse graphs. To this end, we propose a new graph Transformer called NTFormer to address this issue. NTFormer introduces a novel token generator called Node2Par, which constructs various token sequences using different token elements for each node. This flexibility allows Node2Par to generate valuable token sequences from different perspectives, ensuring comprehensive expression of rich graph features. Benefiting from the merits of Node2Par, NTFormer only leverages a Transformer-based backbone without graph-specific modifications to learn node representations, eliminating the need for graph-specific modifications. Extensive experiments conducted on various benchmark datasets containing homophily and heterophily graphs with different scales demonstrate the superiority of NTFormer over representative graph Transformers and graph neural networks for node classification.
Abstract:While tokenized graph Transformers have demonstrated strong performance in node classification tasks, their reliance on a limited subset of nodes with high similarity scores for constructing token sequences overlooks valuable information from other nodes, hindering their ability to fully harness graph information for learning optimal node representations. To address this limitation, we propose a novel graph Transformer called GCFormer. Unlike previous approaches, GCFormer develops a hybrid token generator to create two types of token sequences, positive and negative, to capture diverse graph information. And a tailored Transformer-based backbone is adopted to learn meaningful node representations from these generated token sequences. Additionally, GCFormer introduces contrastive learning to extract valuable information from both positive and negative token sequences, enhancing the quality of learned node representations. Extensive experimental results across various datasets, including homophily and heterophily graphs, demonstrate the superiority of GCFormer in node classification, when compared to representative graph neural networks (GNNs) and graph Transformers.
Abstract:The advent of Vision Transformers (ViTs) marks a substantial paradigm shift in the realm of computer vision. ViTs capture the global information of images through self-attention modules, which perform dot product computations among patchified image tokens. While self-attention modules empower ViTs to capture long-range dependencies, the computational complexity grows quadratically with the number of tokens, which is a major hindrance to the practical application of ViTs. Moreover, the self-attention mechanism in deep ViTs is also susceptible to the attention saturation issue. Accordingly, we argue against the necessity of computing the attention scores in every layer, and we propose the Less-Attention Vision Transformer (LaViT), which computes only a few attention operations at each stage and calculates the subsequent feature alignments in other layers via attention transformations that leverage the previously calculated attention scores. This novel approach can mitigate two primary issues plaguing traditional self-attention modules: the heavy computational burden and attention saturation. Our proposed architecture offers superior efficiency and ease of implementation, merely requiring matrix multiplications that are highly optimized in contemporary deep learning frameworks. Moreover, our architecture demonstrates exceptional performance across various vision tasks including classification, detection and segmentation.
Abstract:The integration of Voice Control Systems (VCS) into smart devices and their growing presence in daily life accentuate the importance of their security. Current research has uncovered numerous vulnerabilities in VCS, presenting significant risks to user privacy and security. However, a cohesive and systematic examination of these vulnerabilities and the corresponding solutions is still absent. This lack of comprehensive analysis presents a challenge for VCS designers in fully understanding and mitigating the security issues within these systems. Addressing this gap, our study introduces a hierarchical model structure for VCS, providing a novel lens for categorizing and analyzing existing literature in a systematic manner. We classify attacks based on their technical principles and thoroughly evaluate various attributes, such as their methods, targets, vectors, and behaviors. Furthermore, we consolidate and assess the defense mechanisms proposed in current research, offering actionable recommendations for enhancing VCS security. Our work makes a significant contribution by simplifying the complexity inherent in VCS security, aiding designers in effectively identifying and countering potential threats, and setting a foundation for future advancements in VCS security research.
Abstract:The Partitioning Min-Max Weighted Matching (PMMWM) problem, being a practical NP-hard problem, integrates the task of partitioning the vertices of a bipartite graph into disjoint sets of limited size with the classical Maximum-Weight Perfect Matching (MPWM) problem. Initially introduced in 2015, the state-of-the-art method for addressing PMMWM is the MP$_{\text{LS}}$. In this paper, we present a novel approach, the Fast Iterative Match-Partition Hybrid Genetic Algorithm (FIMP-HGA), for addressing PMMWM. Similar to MP$_{\text{LS}}$, FIMP-HGA divides the solving into match and partition stages, iteratively refining the solution. In the match stage, we propose the KM-M algorithm, which reduces matching complexity through incremental adjustments, significantly enhancing runtime efficiency. For the partition stage, we introduce a Hybrid Genetic Algorithm (HGA) incorporating an elite strategy and design a Greedy Partition Crossover (GPX) operator alongside a Multilevel Local Search (MLS) to optimize individuals in the population. Population initialization employs various methods, including the multi-way Karmarkar-Karp (KK) algorithm, ensuring both quality and diversity. At each iteration, the bipartite graph is adjusted based on the current solution, aiming for continuous improvement. To conduct comprehensive experiments, we develop a new instance generation method compatible with existing approaches, resulting in four benchmark groups. Extensive experiments evaluate various algorithm modules, accurately assessing each module's impact on improvement. Evaluation results on our benchmarks demonstrate that the proposed FIMP-HGA significantly enhances solution quality compared to MP$_{\text{LS}}$, meanwhile reducing runtime by 3 to 20 times.
Abstract:Effective image classification hinges on discerning relevant features from both foreground and background elements, with the foreground typically holding the critical information. While humans adeptly classify images with limited exposure, artificial neural networks often struggle with feature selection from rare samples. To address this challenge, we propose a novel method for selecting class-relevant patch embeddings. Our approach involves splitting support and query images into patches, encoding them using a pre-trained Vision Transformer (ViT) to obtain class embeddings and patch embeddings, respectively. Subsequently, we filter patch embeddings using class embeddings to retain only the class-relevant ones. For each image, we calculate the similarity between class embedding and each patch embedding, sort the similarity sequence in descending order, and only retain top-ranked patch embeddings. By prioritizing similarity between the class embedding and patch embeddings, we select top-ranked patch embeddings to be fused with class embedding to form a comprehensive image representation, enhancing pattern recognition across instances. Our strategy effectively mitigates the impact of class-irrelevant patch embeddings, yielding improved performance in pre-trained models. Extensive experiments on popular few-shot classification benchmarks demonstrate the simplicity, efficacy, and computational efficiency of our approach, outperforming state-of-the-art baselines under both 5-shot and 1-shot scenarios.