Abstract:Existing knowledge distillation (KD) methods have demonstrated their ability in achieving student network performance on par with their teachers. However, the knowledge gap between the teacher and student remains significant and may hinder the effectiveness of the distillation process. In this work, we introduce the structure of Neural Collapse (NC) into the KD framework. NC typically occurs in the final phase of training, resulting in a graceful geometric structure where the last-layer features form a simplex equiangular tight frame. Such phenomenon has improved the generalization of deep network training. We hypothesize that NC can also alleviate the knowledge gap in distillation, thereby enhancing student performance. This paper begins with an empirical analysis to bridge the connection between knowledge distillation and neural collapse. Through this analysis, we establish that transferring the teacher's NC structure to the student benefits the distillation process. Therefore, instead of merely transferring instance-level logits or features, as done by existing distillation methods, we encourage students to learn the teacher's NC structure. Thereby, we propose a new distillation paradigm termed Neural Collapse-inspired Knowledge Distillation (NCKD). Comprehensive experiments demonstrate that NCKD is simple yet effective, improving the generalization of all distilled student models and achieving state-of-the-art accuracy performance.
Abstract:Trajectory prediction with uncertainty is a critical and challenging task for autonomous driving. Nowadays, we can easily access sensor data represented in multiple views. However, cross-view consistency has not been evaluated by the existing models, which might lead to divergences between the multimodal predictions from different views. It is not practical and effective when the network does not comprehend the 3D scene, which could cause the downstream module in a dilemma. Instead, we predicts multimodal trajectories while maintaining cross-view consistency. We presented a cross-view trajectory prediction method using shared 3D Queries (XVTP3D). We employ a set of 3D queries shared across views to generate multi-goals that are cross-view consistent. We also proposed a random mask method and coarse-to-fine cross-attention to capture robust cross-view features. As far as we know, this is the first work that introduces the outstanding top-down paradigm in BEV detection field to a trajectory prediction problem. The results of experiments on two publicly available datasets show that XVTP3D achieved state-of-the-art performance with consistent cross-view predictions.