Abstract:The contextual multi-armed bandit (MAB) is a widely used framework for problems requiring sequential decision-making under uncertainty, such as recommendation systems. In applications involving a large number of users, the performance of contextual MAB can be significantly improved by facilitating collaboration among multiple users. This has been achieved by the clustering of bandits (CB) methods, which adaptively group the users into different clusters and achieve collaboration by allowing the users in the same cluster to share data. However, classical CB algorithms typically rely on numerical reward feedback, which may not be practical in certain real-world applications. For instance, in recommendation systems, it is more realistic and reliable to solicit preference feedback between pairs of recommended items rather than absolute rewards. To address this limitation, we introduce the first "clustering of dueling bandit algorithms" to enable collaborative decision-making based on preference feedback. We propose two novel algorithms: (1) Clustering of Linear Dueling Bandits (COLDB) which models the user reward functions as linear functions of the context vectors, and (2) Clustering of Neural Dueling Bandits (CONDB) which uses a neural network to model complex, non-linear user reward functions. Both algorithms are supported by rigorous theoretical analyses, demonstrating that user collaboration leads to improved regret bounds. Extensive empirical evaluations on synthetic and real-world datasets further validate the effectiveness of our methods, establishing their potential in real-world applications involving multiple users with preference-based feedback.
Abstract:Contextual linear dueling bandits have recently garnered significant attention due to their widespread applications in important domains such as recommender systems and large language models. Classical dueling bandit algorithms are typically only applicable to a single agent. However, many applications of dueling bandits involve multiple agents who wish to collaborate for improved performance yet are unwilling to share their data. This motivates us to draw inspirations from federated learning, which involves multiple agents aiming to collaboratively train their neural networks via gradient descent (GD) without sharing their raw data. Previous works have developed federated linear bandit algorithms which rely on closed-form updates of the bandit parameters (e.g., the linear function parameter) to achieve collaboration. However, in linear dueling bandits, the linear function parameter lacks a closed-form expression and its estimation requires minimizing a loss function. This renders these previous methods inapplicable. In this work, we overcome this challenge through an innovative and principled combination of online gradient descent (for minimizing the loss function to estimate the linear function parameters) and federated learning, hence introducing the first federated linear dueling bandit algorithms. Through rigorous theoretical analysis, we prove that our algorithms enjoy a sub-linear upper bound on its cumulative regret. We also use empirical experiments to demonstrate the effectiveness of our algorithms and the practical benefit of collaboration.
Abstract:Large language models (LLMs) have been adopted to solve sequential decision-making tasks such as multi-armed bandits (MAB), in which an LLM is directly instructed to select the arms to pull in every iteration. However, this paradigm of direct arm selection using LLMs has been shown to be suboptimal in many MAB tasks. Therefore, we propose an alternative approach which combines the strengths of classical MAB and LLMs. Specifically, we adopt a classical MAB algorithm as the high-level framework and leverage the strong in-context learning capability of LLMs to perform the sub-task of reward prediction. Firstly, we incorporate the LLM-based reward predictor into the classical Thompson sampling (TS) algorithm and adopt a decaying schedule for the LLM temperature to ensure a transition from exploration to exploitation. Next, we incorporate the LLM-based reward predictor (with a temperature of 0) into a regression oracle-based MAB algorithm equipped with an explicit exploration mechanism. We also extend our TS-based algorithm to dueling bandits where only the preference feedback between pairs of arms is available, which requires non-trivial algorithmic modifications. We conduct empirical evaluations using both synthetic MAB tasks and experiments designed using real-world text datasets, in which the results show that our algorithms consistently outperform previous baseline methods based on direct arm selection. Interestingly, we also demonstrate that in challenging tasks where the arms lack semantic meanings that can be exploited by the LLM, our approach achieves considerably better performance than LLM-based direct arm selection.
Abstract:Recently, zeroth-order (ZO) optimization plays an essential role in scenarios where gradient information is inaccessible or unaffordable, such as black-box systems and resource-constrained environments. While existing adaptive methods such as ZO-AdaMM have shown promise, they are fundamentally limited by their underutilization of moment information during optimization, usually resulting in underperforming convergence. To overcome these limitations, this paper introduces Refined Adaptive Zeroth-Order Optimization (R-AdaZO). Specifically, we first show the untapped variance reduction effect of first moment estimate on ZO gradient estimation, which improves the accuracy and stability of ZO updates. We then refine the second moment estimate based on these variance-reduced gradient estimates to better capture the geometry of the optimization landscape, enabling a more effective scaling of ZO updates. We present rigorous theoretical analysis to show (I) the first analysis to the variance reduction of first moment estimate in ZO optimization, (II) the improved second moment estimates with a more accurate approximation of its variance-free ideal, (III) the first variance-aware convergence framework for adaptive ZO methods, which may be of independent interest, and (IV) the faster convergence of R-AdaZO than existing baselines like ZO-AdaMM. Our extensive experiments, including synthetic problems, black-box adversarial attack, and memory-efficient fine-tuning of large language models (LLMs), further verify the superior convergence of R-AdaZO, indicating that R-AdaZO offers an improved solution for real-world ZO optimization challenges.
Abstract:Large language models (LLMs) have recently been employed as agents to solve sequential decision-making tasks such as Bayesian optimization and multi-armed bandits (MAB). These works usually adopt an LLM for sequential action selection by providing it with a fixed, manually designed meta-prompt. However, numerous previous works have found that the prompt has a significant impact on the performance of the LLM, which calls for a method to automatically optimize the meta-prompt for LLM-based agents. Unfortunately, the non-stationarity in the reward observations during LLM-based sequential decision-making makes meta-prompt optimization highly challenging. To address this challenge, we draw inspirations from adversarial bandit algorithms, which are inherently capable of handling non-stationary reward observations. Building on this foundation, we propose our EXPonential-weight algorithm for prompt Optimization} (EXPO) to automatically optimize the task description and meta-instruction in the meta-prompt for LLM-based agents. We also extend EXPO to additionally optimize the exemplars (i.e., history of interactions) in the meta-prompt to further enhance the performance, hence introducing our EXPO-ES algorithm. We use extensive experiments to show that our algorithms significantly improve the performance of LLM-based sequential decision-making.
Abstract:Contextual dueling bandit is used to model the bandit problems, where a learner's goal is to find the best arm for a given context using observed noisy preference feedback over the selected arms for the past contexts. However, existing algorithms assume the reward function is linear, which can be complex and non-linear in many real-life applications like online recommendations or ranking web search results. To overcome this challenge, we use a neural network to estimate the reward function using preference feedback for the previously selected arms. We propose upper confidence bound- and Thompson sampling-based algorithms with sub-linear regret guarantees that efficiently select arms in each round. We then extend our theoretical results to contextual bandit problems with binary feedback, which is in itself a non-trivial contribution. Experimental results on the problem instances derived from synthetic datasets corroborate our theoretical results.
Abstract:This position paper proposes a data-centric viewpoint of AI research, focusing on large language models (LLMs). We start by making the key observation that data is instrumental in the developmental (e.g., pretraining and fine-tuning) and inferential stages (e.g., in-context learning) of LLMs, and yet it receives disproportionally low attention from the research community. We identify four specific scenarios centered around data, covering data-centric benchmarks and data curation, data attribution, knowledge transfer, and inference contextualization. In each scenario, we underscore the importance of data, highlight promising research directions, and articulate the potential impacts on the research community and, where applicable, the society as a whole. For instance, we advocate for a suite of data-centric benchmarks tailored to the scale and complexity of data for LLMs. These benchmarks can be used to develop new data curation methods and document research efforts and results, which can help promote openness and transparency in AI and LLM research.
Abstract:Large language models (LLMs) have demonstrated remarkable performances in various tasks. However, the performance of LLMs heavily depends on the input prompt, which has given rise to a number of recent works on prompt optimization. However, previous works often require the availability of a numeric score to assess the quality of every prompt. Unfortunately, when a human user interacts with a black-box LLM, attaining such a score is often infeasible and unreliable. Instead, it is usually significantly easier and more reliable to obtain preference feedback from a human user, i.e., showing the user the responses generated from a pair of prompts and asking the user which one is preferred. Therefore, in this paper, we study the problem of prompt optimization with human feedback (POHF), in which we aim to optimize the prompt for a black-box LLM using only human preference feedback. Drawing inspiration from dueling bandits, we design a theoretically principled strategy to select a pair of prompts to query for preference feedback in every iteration, and hence introduce our algorithm named automated POHF (APOHF). We apply our APOHF algorithm to various tasks, including optimizing user instructions, prompt optimization for text-to-image generative models, and response optimization with human feedback (i.e., further refining the response using a variant of our APOHF). The results demonstrate that our APOHF can efficiently find a good prompt using a small number of preference feedback instances. Our code can be found at \url{https://github.com/xqlin98/APOHF}.
Abstract:Large language models (LLMs) have shown impressive capabilities in real-world applications. The capability of in-context learning (ICL) allows us to adapt an LLM to downstream tasks by including input-label exemplars in the prompt without model fine-tuning. However, the quality of these exemplars in the prompt greatly impacts performance, highlighting the need for an effective automated exemplar selection method. Recent studies have explored retrieval-based approaches to select exemplars tailored to individual test queries, which can be undesirable due to extra test-time computation and an increased risk of data exposure. Moreover, existing methods fail to adequately account for the impact of exemplar ordering on the performance. On the other hand, the impact of the instruction, another essential component in the prompt given to the LLM, is often overlooked in existing exemplar selection methods. To address these challenges, we propose a novel method named EASE, which leverages the hidden embedding from a pre-trained language model to represent ordered sets of exemplars and uses a neural bandit algorithm to optimize the sets of exemplars while accounting for exemplar ordering. Our EASE can efficiently find an ordered set of exemplars that performs well for all test queries from a given task, thereby eliminating test-time computation. Importantly, EASE can be readily extended to jointly optimize both the exemplars and the instruction. Through extensive empirical evaluations (including novel tasks), we demonstrate the superiority of EASE over existing methods, and reveal practical insights about the impact of exemplar selection on ICL, which may be of independent interest. Our code is available at https://github.com/ZhaoxuanWu/EASE-Prompt-Optimization.
Abstract:Neural architecture search (NAS) has become a key component of AutoML and a standard tool to automate the design of deep neural networks. Recently, training-free NAS as an emerging paradigm has successfully reduced the search costs of standard training-based NAS by estimating the true architecture performance with only training-free metrics. Nevertheless, the estimation ability of these metrics typically varies across different tasks, making it challenging to achieve robust and consistently good search performance on diverse tasks with only a single training-free metric. Meanwhile, the estimation gap between training-free metrics and the true architecture performances limits training-free NAS to achieve superior performance. To address these challenges, we propose the robustifying and boosting training-free NAS (RoBoT) algorithm which (a) employs the optimized combination of existing training-free metrics explored from Bayesian optimization to develop a robust and consistently better-performing metric on diverse tasks, and (b) applies greedy search, i.e., the exploitation, on the newly developed metric to bridge the aforementioned gap and consequently to boost the search performance of standard training-free NAS further. Remarkably, the expected performance of our RoBoT can be theoretically guaranteed, which improves over the existing training-free NAS under mild conditions with additional interesting insights. Our extensive experiments on various NAS benchmark tasks yield substantial empirical evidence to support our theoretical results.