Abstract:Spiking neural networks (SNNs) compute with discrete spikes and exploit temporal structure, yet most adversarial attacks change intensities or event counts instead of timing. We study a timing-only adversary that retimes existing spikes while preserving spike counts and amplitudes in event-driven SNNs, thus remaining rate-preserving. We formalize a capacity-1 spike-retiming threat model with a unified trio of budgets: per-spike jitter $\mathcal{B}_{\infty}$, total delay $\mathcal{B}_{1}$, and tamper count $\mathcal{B}_{0}$. Feasible adversarial examples must satisfy timeline consistency and non-overlap, which makes the search space discrete and constrained. To optimize such retimings at scale, we use projected-in-the-loop (PIL) optimization: shift-probability logits yield a differentiable soft retiming for backpropagation, and a strict projection in the forward pass produces a feasible discrete schedule that satisfies capacity-1, non-overlap, and the chosen budget at every step. The objective maximizes task loss on the projected input and adds a capacity regularizer together with budget-aware penalties, which stabilizes gradients and aligns optimization with evaluation. Across event-driven benchmarks (CIFAR10-DVS, DVS-Gesture, N-MNIST) and diverse SNN architectures, we evaluate under binary and integer event grids and a range of retiming budgets, and also test models trained with timing-aware adversarial training designed to counter timing-only attacks. For example, on DVS-Gesture the attack attains high success (over $90\%$) while touching fewer than $2\%$ of spikes under $\mathcal{B}_{0}$. Taken together, our results show that spike retiming is a practical and stealthy attack surface that current defenses struggle to counter, providing a clear reference for temporal robustness in event-driven SNNs. Code is available at https://github.com/yuyi-sd/Spike-Retiming-Attacks.
Abstract:Graph neural networks (GNNs) have been widely used in various graph machine learning scenarios. Existing literature primarily assumes well-annotated training graphs, while the reliability of labels is not guaranteed in real-world scenarios. Recently, efforts have been made to address the problem of graph learning with label noise. However, existing methods often (i) struggle to distinguish between reliable and unreliable nodes, and (ii) overlook the relational information embedded in the graph topology. To tackle this problem, this paper proposes a novel method, Dual-Standard Semantic Homogeneity with Dynamic Optimization (DREAM), for reliable, relation-informed optimization on graphs with label noise. Specifically, we design a relation-informed dynamic optimization framework that iteratively reevaluates the reliability of each labeled node in the graph during the optimization process according to the relation of the target node and other nodes. To measure this relation comprehensively, we propose a dual-standard selection strategy that selects a set of anchor nodes based on both node proximity and graph topology. Subsequently, we compute the semantic homogeneity between the target node and the anchor nodes, which serves as guidance for optimization. We also provide a rigorous theoretical analysis to justify the design of DREAM. Extensive experiments are performed on six graph datasets across various domains under three types of graph label noise against competing baselines, and the results demonstrate the effectiveness of the proposed DREAM.
Abstract:Ensuring that Large Language Models (LLMs) adhere to safety principles without refusing benign requests remains a significant challenge. While OpenAI introduces deliberative alignment (DA) to enhance the safety of its o-series models through reasoning over detailed ``code-like'' safety rules, the effectiveness of this approach in open-source LLMs, which typically lack advanced reasoning capabilities, is understudied. In this work, we systematically evaluate the impact of explicitly specifying extensive safety codes versus demonstrating them through illustrative cases. We find that referencing explicit codes inconsistently improves harmlessness and systematically degrades helpfulness, whereas training on case-augmented simple codes yields more robust and generalized safety behaviors. By guiding LLMs with case-augmented reasoning instead of extensive code-like safety rules, we avoid rigid adherence to narrowly enumerated rules and enable broader adaptability. Building on these insights, we propose CADA, a case-augmented deliberative alignment method for LLMs utilizing reinforcement learning on self-generated safety reasoning chains. CADA effectively enhances harmlessness, improves robustness against attacks, and reduces over-refusal while preserving utility across diverse benchmarks, offering a practical alternative to rule-only DA for improving safety while maintaining helpfulness.
Abstract:Sparse Mixture-of-Experts (MoE) architectures effectively scale model capacity by activating only a subset of experts for each input token. However, the standard Top-k routing strategy imposes a uniform sparsity pattern that ignores the varying difficulty of tokens. While Top-p routing offers a flexible alternative, existing implementations typically rely on a fixed global probability threshold, which results in uncontrolled computational costs and sensitivity to hyperparameter selection. In this paper, we propose DTop-p MoE, a sparsity-controllable dynamic Top-p routing mechanism. To resolve the challenge of optimizing a non-differentiable threshold, we utilize a Proportional-Integral (PI) Controller that dynamically adjusts the probability threshold to align the running activated-expert sparsity with a specified target. Furthermore, we introduce a dynamic routing normalization mechanism that adapts layer-wise routing logits, allowing different layers to learn distinct expert-selection patterns while utilizing a global probability threshold. Extensive experiments on Large Language Models and Diffusion Transformers demonstrate that DTop-p consistently outperforms both Top-k and fixed-threshold Top-p baselines. Our analysis confirms that DTop-p maintains precise control over the number of activated experts while adaptively allocating resources across different tokens and layers. Furthermore, DTop-p exhibits strong scaling properties with respect to expert granularity, expert capacity, model size, and dataset size, offering a robust framework for large-scale MoE pre-training.
Abstract:Brain-inspired Spiking neural networks (SNNs) promise energy-efficient intelligence via event-driven, sparse computation, but deeper architectures inflate parameters and computational cost, hindering their edge deployment. Recent progress in SNN pruning helps alleviate this burden, yet existing efforts fall into only two families: \emph{unstructured} pruning, which attains high sparsity but is difficult to accelerate on general hardware, and \emph{structured} pruning, which eases deployment but lack flexibility and often degrades accuracy at matched sparsity. In this work, we introduce \textbf{SpikeNM}, the first SNN-oriented \emph{semi-structured} \(N{:}M\) pruning framework that learns sparse SNNs \emph{from scratch}, enforcing \emph{at most \(N\)} non-zeros per \(M\)-weight block. To avoid the combinatorial space complexity \(\sum_{k=1}^{N}\binom{M}{k}\) growing exponentially with \(M\), SpikeNM adopts an \(M\)-way basis-logit parameterization with a differentiable top-\(k\) sampler, \emph{linearizing} per-block complexity to \(\mathcal O(M)\) and enabling more aggressive sparsification. Further inspired by neuroscience, we propose \emph{eligibility-inspired distillation} (EID), which converts temporally accumulated credits into block-wise soft targets to align mask probabilities with spiking dynamics, reducing sampling variance and stabilizing search under high sparsity. Experiments show that at \(2{:}4\) sparsity, SpikeNM maintains and even with gains across main-stream datasets, while yielding hardware-amenable patterns that complement intrinsic spike sparsity.
Abstract:The integration of event cameras and spiking neural networks (SNNs) promises energy-efficient visual intelligence, yet scarce event data and the sparsity of DVS outputs hinder effective training. Prior knowledge transfers from RGB to DVS often underperform because the distribution gap between modalities is substantial. In this work, we present Time-step Mixup Knowledge Transfer (TMKT), a cross-modal training framework with a probabilistic Time-step Mixup (TSM) strategy. TSM exploits the asynchronous nature of SNNs by interpolating RGB and DVS inputs at various time steps to produce a smooth curriculum within each sequence, which reduces gradient variance and stabilizes optimization with theoretical analysis. To employ auxiliary supervision from TSM, TMKT introduces two lightweight modality-aware objectives, Modality Aware Guidance (MAG) for per-frame source supervision and Mixup Ratio Perception (MRP) for sequence-level mix ratio estimation, which explicitly align temporal features with the mixing schedule. TMKT enables smoother knowledge transfer, helps mitigate modality mismatch during training, and achieves superior performance in spiking image classification tasks. Extensive experiments across diverse benchmarks and multiple SNN backbones, together with ablations, demonstrate the effectiveness of our method.
Abstract:Event cameras sense brightness changes and output binary asynchronous event streams, attracting increasing attention. Their bio-inspired dynamics align well with spiking neural networks (SNNs), offering a promising energy-efficient alternative to conventional vision systems. However, SNNs remain costly to train due to temporal coding, which limits their practical deployment. To alleviate the high training cost of SNNs, we introduce \textbf{PACE} (Phase-Aligned Condensation for Events), the first dataset distillation framework to SNNs and event-based vision. PACE distills a large training dataset into a compact synthetic one that enables fast SNN training, which is achieved by two core modules: \textbf{ST-DSM} and \textbf{PEQ-N}. ST-DSM uses residual membrane potentials to densify spike-based features (SDR) and to perform fine-grained spatiotemporal matching of amplitude and phase (ST-SM), while PEQ-N provides a plug-and-play straight through probabilistic integer quantizer compatible with standard event-frame pipelines. Across DVS-Gesture, CIFAR10-DVS, and N-MNIST datasets, PACE outperforms existing coreset selection and dataset distillation baselines, with particularly strong gains on dynamic event streams and at low or moderate IPC. Specifically, on N-MNIST, it achieves \(84.4\%\) accuracy, about \(85\%\) of the full training set performance, while reducing training time by more than \(50\times\) and storage cost by \(6000\times\), yielding compact surrogates that enable minute-scale SNN training and efficient edge deployment.




Abstract:In this paper, we present two effective policy learning algorithms for multi-agent online coordination(MA-OC) problem. The first one, \texttt{MA-SPL}, not only can achieve the optimal $(1-\frac{c}{e})$-approximation guarantee for the MA-OC problem with submodular objectives but also can handle the unexplored $\alpha$-weakly DR-submodular and $(\gamma,\beta)$-weakly submodular scenarios, where $c$ is the curvature of the investigated submodular functions, $\alpha$ denotes the diminishing-return(DR) ratio and the tuple $(\gamma,\beta)$ represents the submodularity ratios. Subsequently, in order to reduce the reliance on the unknown parameters $\alpha,\gamma,\beta$ inherent in the \texttt{MA-SPL} algorithm, we further introduce the second online algorithm named \texttt{MA-MPL}. This \texttt{MA-MPL} algorithm is entirely \emph{parameter-free} and simultaneously can maintain the same approximation ratio as the first \texttt{MA-SPL} algorithm. The core of our \texttt{MA-SPL} and \texttt{MA-MPL} algorithms is a novel continuous-relaxation technique termed as \emph{policy-based continuous extension}. Compared with the well-established \emph{multi-linear extension}, a notable advantage of this new \emph{policy-based continuous extension} is its ability to provide a lossless rounding scheme for any set function, thereby enabling us to tackle the challenging weakly submodular objectives. Finally, extensive simulations are conducted to validate the effectiveness of our proposed algorithms.
Abstract:Test-time scaling (TTS) for large language models (LLMs) has thus far fallen into two largely separate paradigms: (1) reinforcement learning (RL) methods that optimize sparse outcome-based rewards, yet suffer from instability and low sample efficiency; and (2) search-based techniques guided by independently trained, static process reward models (PRMs), which require expensive human- or LLM-generated labels and often degrade under distribution shifts. In this paper, we introduce AIRL-S, the first natural unification of RL-based and search-based TTS. Central to AIRL-S is the insight that the reward function learned during RL training inherently represents the ideal PRM for guiding downstream search. Specifically, we leverage adversarial inverse reinforcement learning (AIRL) combined with group relative policy optimization (GRPO) to learn a dense, dynamic PRM directly from correct reasoning traces, entirely eliminating the need for labeled intermediate process data. At inference, the resulting PRM simultaneously serves as the critic for RL rollouts and as a heuristic to effectively guide search procedures, facilitating robust reasoning chain extension, mitigating reward hacking, and enhancing cross-task generalization. Experimental results across eight benchmarks, including mathematics, scientific reasoning, and code generation, demonstrate that our unified approach improves performance by 9 % on average over the base model, matching GPT-4o. Furthermore, when integrated into multiple search algorithms, our PRM consistently outperforms all baseline PRMs trained with labeled data. These results underscore that, indeed, your reward function for RL is your best PRM for search, providing a robust and cost-effective solution to complex reasoning tasks in LLMs.
Abstract:Recent progress in large language models (LLMs) has leveraged their in-context learning (ICL) abilities to enable quick adaptation to unseen biomedical NLP tasks. By incorporating only a few input-output examples into prompts, LLMs can rapidly perform these new tasks. While the impact of these demonstrations on LLM performance has been extensively studied, most existing approaches prioritize representativeness over diversity when selecting examples from large corpora. To address this gap, we propose Dual-Div, a diversity-enhanced data-efficient framework for demonstration selection in biomedical ICL. Dual-Div employs a two-stage retrieval and ranking process: First, it identifies a limited set of candidate examples from a corpus by optimizing both representativeness and diversity (with optional annotation for unlabeled data). Second, it ranks these candidates against test queries to select the most relevant and non-redundant demonstrations. Evaluated on three biomedical NLP tasks (named entity recognition (NER), relation extraction (RE), and text classification (TC)) using LLaMA 3.1 and Qwen 2.5 for inference, along with three retrievers (BGE-Large, BMRetriever, MedCPT), Dual-Div consistently outperforms baselines-achieving up to 5% higher macro-F1 scores-while demonstrating robustness to prompt permutations and class imbalance. Our findings establish that diversity in initial retrieval is more critical than ranking-stage optimization, and limiting demonstrations to 3-5 examples maximizes performance efficiency.