Abstract:Multimodal AI has the potential to significantly enhance document-understanding tasks, such as processing receipts, understanding workflows, extracting data from documents, and summarizing reports. Code generation tasks that require long-structured outputs can also be enhanced by multimodality. Despite this, their use in commercial applications is often limited due to limited access to training data and restrictive licensing, which hinders open access. To address these limitations, we introduce BigDocs-7.5M, a high-quality, open-access dataset comprising 7.5 million multimodal documents across 30 tasks. We use an efficient data curation process to ensure our data is high-quality and license-permissive. Our process emphasizes accountability, responsibility, and transparency through filtering rules, traceable metadata, and careful content analysis. Additionally, we introduce BigDocs-Bench, a benchmark suite with 10 novel tasks where we create datasets that reflect real-world use cases involving reasoning over Graphical User Interfaces (GUI) and code generation from images. Our experiments show that training with BigDocs-Bench improves average performance up to 25.8% over closed-source GPT-4o in document reasoning and structured output tasks such as Screenshot2HTML or Image2Latex generation. Finally, human evaluations showed a preference for outputs from models trained on BigDocs over GPT-4o. This suggests that BigDocs can help both academics and the open-source community utilize and improve AI tools to enhance multimodal capabilities and document reasoning. The project is hosted at https://bigdocs.github.io .
Abstract:Graph self-supervised learning (GSSL) has emerged as a compelling framework for extracting informative representations from graph-structured data without extensive reliance on labeled inputs. In this study, we introduce Graph Interplay (GIP), an innovative and versatile approach that significantly enhances the performance equipped with various existing GSSL methods. To this end, GIP advocates direct graph-level communications by introducing random inter-graph edges within standard batches. Against GIP's simplicity, we further theoretically show that \textsc{GIP} essentially performs a principled manifold separation via combining inter-graph message passing and GSSL, bringing about more structured embedding manifolds and thus benefits a series of downstream tasks. Our empirical study demonstrates that GIP surpasses the performance of prevailing GSSL methods across multiple benchmarks by significant margins, highlighting its potential as a breakthrough approach. Besides, GIP can be readily integrated into a series of GSSL methods and consistently offers additional performance gain. This advancement not only amplifies the capability of GSSL but also potentially sets the stage for a novel graph learning paradigm in a broader sense.
Abstract:The recent surge in contrast-based graph self-supervised learning has prominently featured an intensified exploration of spectral cues. However, an intriguing paradox emerges, as methods grounded in seemingly conflicting assumptions or heuristic approaches regarding the spectral domain demonstrate notable enhancements in learning performance. This paradox prompts a critical inquiry into the genuine contribution of spectral information to contrast-based graph self-supervised learning. This study undertakes an extensive investigation into this inquiry, conducting a thorough study of the relationship between spectral characteristics and the learning outcomes of contemporary methodologies. Based on this analysis, we claim that the effectiveness and significance of spectral information need to be questioned. Instead, we revisit simple edge perturbation: random edge dropping designed for node-level self-supervised learning and random edge adding intended for graph-level self-supervised learning. Compelling evidence is presented that these simple yet effective strategies consistently yield superior performance while demanding significantly fewer computational resources compared to all prior spectral augmentation methods. The proposed insights represent a significant leap forward in the field, potentially reshaping the understanding and implementation of graph self-supervised learning.
Abstract:While recent progress in video-text retrieval has been driven by the exploration of powerful model architectures and training strategies, the representation learning ability of video-text retrieval models is still limited due to low-quality and scarce training data annotations. To address this issue, we present a novel video-text learning paradigm, HaVTR, which augments video and text data to learn more generalized features. Specifically, we first adopt a simple augmentation method, which generates self-similar data by randomly duplicating or dropping subwords and frames. In addition, inspired by the recent advancement in visual and language generative models, we propose a more powerful augmentation method through textual paraphrasing and video stylization using large language models (LLMs) and visual generative models (VGMs). Further, to bring richer information into video and text, we propose a hallucination-based augmentation method, where we use LLMs and VGMs to generate and add new relevant information to the original data. Benefiting from the enriched data, extensive experiments on several video-text retrieval benchmarks demonstrate the superiority of HaVTR over existing methods.
Abstract:Over recent decades, significant advancements in cross-modal retrieval are mainly driven by breakthroughs in visual and linguistic modeling. However, a recent study shows that multi-modal data representations tend to cluster within a limited convex cone (as representation degeneration problem), which hinders retrieval performance due to the inseparability of these representations. In our study, we first empirically validate the presence of the representation degeneration problem across multiple cross-modal benchmarks and methods. Next, to address it, we introduce a novel method, called InvGC, a post-processing technique inspired by graph convolution and average pooling. Specifically, InvGC defines the graph topology within the datasets and then applies graph convolution in a subtractive manner. This method effectively separates representations by increasing the distances between data points. To improve the efficiency and effectiveness of InvGC, we propose an advanced graph topology, LocalAdj, which only aims to increase the distances between each data point and its nearest neighbors. To understand why InvGC works, we present a detailed theoretical analysis, proving that the lower bound of recall will be improved after deploying InvGC. Extensive empirical results show that InvGC and InvGC w/LocalAdj significantly mitigate the representation degeneration problem, thereby enhancing retrieval performance. Our code is available at https://github.com/yimuwangcs/Better_Cross_Modal_Retrieval
Abstract:In this work, we present a post-processing solution to address the hubness problem in cross-modal retrieval, a phenomenon where a small number of gallery data points are frequently retrieved, resulting in a decline in retrieval performance. We first theoretically demonstrate the necessity of incorporating both the gallery and query data for addressing hubness as hubs always exhibit high similarity with gallery and query data. Second, building on our theoretical results, we propose a novel framework, Dual Bank Normalization (DBNorm). While previous work has attempted to alleviate hubness by only utilizing the query samples, DBNorm leverages two banks constructed from the query and gallery samples to reduce the occurrence of hubs during inference. Next, to complement DBNorm, we introduce two novel methods, dual inverted softmax and dual dynamic inverted softmax, for normalizing similarity based on the two banks. Specifically, our proposed methods reduce the similarity between hubs and queries while improving the similarity between non-hubs and queries. Finally, we present extensive experimental results on diverse language-grounded benchmarks, including text-image, text-video, and text-audio, demonstrating the superior performance of our approaches compared to previous methods in addressing hubness and boosting retrieval performance. Our code is available at https://github.com/yimuwangcs/Better_Cross_Modal_Retrieval.
Abstract:Maximizing a monotone submodular function is a fundamental task in machine learning, economics, and statistics. In this paper, we present two communication-efficient decentralized online algorithms for the monotone continuous DR-submodular maximization problem, both of which reduce the number of per-function gradient evaluations and per-round communication complexity from $T^{3/2}$ to $1$. The first one, One-shot Decentralized Meta-Frank-Wolfe (Mono-DMFW), achieves a $(1-1/e)$-regret bound of $O(T^{4/5})$. As far as we know, this is the first one-shot and projection-free decentralized online algorithm for monotone continuous DR-submodular maximization. Next, inspired by the non-oblivious boosting function \citep{zhang2022boosting}, we propose the Decentralized Online Boosting Gradient Ascent (DOBGA) algorithm, which attains a $(1-1/e)$-regret of $O(\sqrt{T})$. To the best of our knowledge, this is the first result to obtain the optimal $O(\sqrt{T})$ against a $(1-1/e)$-approximation with only one gradient inquiry for each local objective function per step. Finally, various experimental results confirm the effectiveness of the proposed methods.