Abstract:With the development of large language models (LLMs), the ability to handle longer contexts has become a key capability for Web applications such as cross-document understanding and LLM-powered search systems. However, this progress faces two major challenges: performance degradation due to sequence lengths out-of-distribution, and excessively long inference times caused by the quadratic computational complexity of attention. These issues hinder the application of LLMs in long-context scenarios. In this paper, we propose Dynamic Token-Level KV Cache Selection (TokenSelect), a model-agnostic, training-free method for efficient and accurate long-context inference. TokenSelect builds upon the observation of non-contiguous attention sparsity, using Query-Key dot products to measure per-head KV Cache criticality at token-level. By per-head soft voting mechanism, TokenSelect selectively involves a small number of critical KV cache tokens in the attention calculation without sacrificing accuracy. To further accelerate TokenSelect, we designed the Selection Cache based on observations of consecutive Query similarity and implemented efficient dot product kernel, significantly reducing the overhead of token selection. A comprehensive evaluation of TokenSelect demonstrates up to 23.84x speedup in attention computation and up to 2.28x acceleration in end-to-end latency, while providing superior performance compared to state-of-the-art long-context inference methods.
Abstract:Semi-supervised learning (SSL) offers a robust framework for harnessing the potential of unannotated data. Traditionally, SSL mandates that all classes possess labeled instances. However, the emergence of open-world SSL (OwSSL) introduces a more practical challenge, wherein unlabeled data may encompass samples from unseen classes. This scenario leads to misclassification of unseen classes as known ones, consequently undermining classification accuracy. To overcome this challenge, this study revisits two methodologies from self-supervised and semi-supervised learning, self-labeling and consistency, tailoring them to address the OwSSL problem. Specifically, we propose an effective framework called OwMatch, combining conditional self-labeling and open-world hierarchical thresholding. Theoretically, we analyze the estimation of class distribution on unlabeled data through rigorous statistical analysis, thus demonstrating that OwMatch can ensure the unbiasedness of the self-label assignment estimator with reliability. Comprehensive empirical analyses demonstrate that our method yields substantial performance enhancements across both known and unknown classes in comparison to previous studies. Code is available at https://github.com/niusj03/OwMatch.
Abstract:Large Vision-Language Models (LVLMs) have achieved remarkable performance in many vision-language tasks, yet their capabilities in fine-grained visual understanding remain insufficiently evaluated. Existing benchmarks either contain limited fine-grained evaluation samples that are mixed with other data, or are confined to object-level assessments in natural images. To holistically assess LVLMs' fine-grained visual understanding capabilities, we propose using document images with multi-granularity and multi-modal information to supplement natural images. In this light, we construct MMDocBench, a benchmark with various OCR-free document understanding tasks for the evaluation of fine-grained visual perception and reasoning abilities. MMDocBench defines 15 main tasks with 4,338 QA pairs and 11,353 supporting regions, covering various document images such as research papers, receipts, financial reports, Wikipedia tables, charts, and infographics. Based on MMDocBench, we conduct extensive experiments using 13 open-source and 3 proprietary advanced LVLMs, assessing their strengths and weaknesses across different tasks and document image types. The benchmark, task instructions, and evaluation code will be made publicly available.
Abstract:Analyzing and forecasting trajectories of agents like pedestrians plays a pivotal role for embodied intelligent applications. The inherent indeterminacy of human behavior and complex social interaction among a rich variety of agents make this task more challenging than common time-series forecasting. In this letter, we aim to explore a distinct formulation for multi-agent trajectory prediction framework. Specifically, we proposed a patching-based temporal feature extraction module and a graph-based social feature extraction module, enabling effective feature extraction and cross-scenario generalization. Moreover, we reassess the role of social interaction and present a novel method based on explicit modality modulation to integrate temporal and social features, thereby constructing an efficient single-stage inference pipeline. Results on public benchmark datasets demonstrate the superior performance of our model compared with the state-of-the-art methods. The code is available at: github.com/TIB-K330/pmm-net.
Abstract:For the 3D localization problem using point spread function (PSF) engineering, we propose a novel enhancement of our previously introduced localization neural network, LocNet. The improved network is a physics-informed neural network (PINN) that we call PiLocNet. Previous works on the localization problem may be categorized separately into model-based optimization and neural network approaches. Our PiLocNet combines the unique strengths of both approaches by incorporating forward-model-based information into the network via a data-fitting loss term that constrains the neural network to yield results that are physically sensible. We additionally incorporate certain regularization terms from the variational method, which further improves the robustness of the network in the presence of image noise, as we show for the Poisson and Gaussian noise models. This framework accords interpretability to the neural network, and the results we obtain show its superiority. Although the paper focuses on the use of single-lobe rotating PSF to encode the full 3D source location, we expect the method to be widely applicable to other PSFs and imaging problems that are constrained by known forward processes.
Abstract:Stereo matching for inland waterways is one of the key technologies for the autonomous navigation of Unmanned Surface Vehicles (USVs), which involves dividing the stereo images into reference images and target images for pixel-level matching. However, due to the challenges of the inland waterway environment, such as blurred textures, large spatial scales, and computational resource constraints of the USVs platform, the participation of geometric features from the target image is required for efficient target-driven matching. Based on this target-driven concept, we propose a lightweight target-driven stereo matching neural network, named LTNet. Specifically, a lightweight and efficient 4D cost volume, named the Geometry Target Volume (GTV), is designed to fully utilize the geometric information of target features by employing the shifted target features as the filtered feature volume. Subsequently, to address the substantial texture interference and object occlusions present in the waterway environment, a Left-Right Consistency Refinement (LRR) module is proposed. The \text{LRR} utilizes the pixel-level differences in left and right disparities to introduce soft constraints, thereby enhancing the accuracy of predictions during the intermediate stages of the network. Moreover, knowledge distillation is utilized to enhance the generalization capability of lightweight models on the USVInland dataset. Furthermore, a new large-scale benchmark, named Spring, is utilized to validate the applicability of LTNet across various scenarios. In experiments on the aforementioned two datasets, LTNet achieves competitive results, with only 3.7M parameters. The code is available at https://github.com/Open-YiQingZhou/LTNet .
Abstract:In this work, we have developed a variational Bayesian inference theory of elasticity, which is accomplished by using a mixed Variational Bayesian inference Finite Element Method (VBI-FEM) that can be used to solve the inverse deformation problems of continua. In the proposed variational Bayesian inference theory of continuum mechanics, the elastic strain energy is used as a prior in a Bayesian inference network, which can intelligently recover the detailed continuum deformation mappings with only given the information on the deformed and undeformed continuum body shapes without knowing the interior deformation and the precise actual boundary conditions, both traction as well as displacement boundary conditions, and the actual material constitutive relation. Moreover, we have implemented the related finite element formulation in a computational probabilistic mechanics framework. To numerically solve mixed variational problem, we developed an operator splitting or staggered algorithm that consists of the finite element (FE) step and the Bayesian learning (BL) step as an analogue of the well-known the Expectation-Maximization (EM) algorithm. By solving the mixed probabilistic Galerkin variational problem, we demonstrated that the proposed method is able to inversely predict continuum deformation mappings with strong discontinuity or fracture without knowing the external load conditions. The proposed method provides a robust machine intelligent solution for the long-sought-after inverse problem solution, which has been a major challenge in structure failure forensic pattern analysis in past several decades. The proposed method may become a promising artificial intelligence-based inverse method for solving general partial differential equations.
Abstract:Proteins, as essential biomolecules, play a central role in biological processes, including metabolic reactions and DNA replication. Accurate prediction of their properties and functions is crucial in biological applications. Recent development of protein language models (pLMs) with supervised fine tuning provides a promising solution to this problem. However, the fine-tuned model is tailored for particular downstream prediction task, and achieving general-purpose protein understanding remains a challenge. In this paper, we introduce Structure-Enhanced Protein Instruction Tuning (SEPIT) framework to bridge this gap. Our approach integrates a noval structure-aware module into pLMs to inform them with structural knowledge, and then connects these enhanced pLMs to large language models (LLMs) to generate understanding of proteins. In this framework, we propose a novel two-stage instruction tuning pipeline that first establishes a basic understanding of proteins through caption-based instructions and then refines this understanding using a mixture of experts (MoEs) to learn more complex properties and functional information with the same amount of activated parameters. Moreover, we construct the largest and most comprehensive protein instruction dataset to date, which allows us to train and evaluate the general-purpose protein understanding model. Extensive experimental results on open-ended generation and closed-set answer tasks demonstrate the superior performance of SEPIT over both closed-source general LLMs and open-source LLMs trained with protein knowledge.
Abstract:Understanding the intentions of robots is essential for natural and seamless human-robot collaboration. Ensuring that robots have means for non-verbal communication is a basis for intuitive and implicit interaction. For this, we contribute an approach to elicit and design human-understandable robot expressions. We outline the approach in the context of non-humanoid robots. We paired human mimicking and enactment with research from gesture elicitation in two phases: first, to elicit expressions, and second, to ensure they are understandable. We present an example application through two studies (N=16 \& N=260) of our approach to elicit expressions for a simple 6-DoF robotic arm. We show that it enabled us to design robot expressions that signal curiosity and interest in getting attention. Our main contribution is an approach to generate and validate understandable expressions for robots, enabling more natural human-robot interaction.
Abstract:LLM-powered personalization agent systems employ Large Language Models (LLMs) to predict users' behavior from their past activities. However, their effectiveness often hinges on the ability to effectively leverage extensive, long user historical data due to its inherent noise and length of such data. Existing pretrained LLMs may generate summaries that are concise but lack the necessary context for downstream tasks, hindering their utility in personalization systems. To address these challenges, we introduce Reinforcement Learning from Prediction Feedback (RLPF). RLPF fine-tunes LLMs to generate concise, human-readable user summaries that are optimized for downstream task performance. By maximizing the usefulness of the generated summaries, RLPF effectively distills extensive user history data while preserving essential information for downstream tasks. Our empirical evaluation demonstrates significant improvements in both extrinsic downstream task utility and intrinsic summary quality, surpassing baseline methods by up to 22% on downstream task performance and achieving an up to 84.59% win rate on Factuality, Abstractiveness, and Readability. RLPF also achieves a remarkable 74% reduction in context length while improving performance on 16 out of 19 unseen tasks and/or datasets, showcasing its generalizability. This approach offers a promising solution for enhancing LLM personalization by effectively transforming long, noisy user histories into informative and human-readable representations.