Abstract:LLMs are often claimed to be capable of Natural Language Inference (NLI), which is widely regarded as a cornerstone of more complex forms of reasoning. However, recent works show that LLMs still suffer from hallucinations in NLI due to attestation bias, where LLMs overly rely on propositional memory to build shortcuts. To solve the issue, we design an unsupervised framework to construct counterfactual reasoning data and fine-tune LLMs to reduce attestation bias. To measure bias reduction, we build bias-adversarial variants of NLI datasets with randomly replaced predicates in premises while keeping hypotheses unchanged. Extensive evaluations show that our framework can significantly reduce hallucinations from attestation bias. Then, we further evaluate LLMs fine-tuned with our framework on original NLI datasets and their bias-neutralized versions, where original entities are replaced with randomly sampled ones. Extensive results show that our framework consistently improves inferential performance on both original and bias-neutralized NLI datasets.
Abstract:Modern front-end (FE) development, especially when leveraging the unique features of frameworks like React and Vue, presents distinctive challenges. These include managing modular architectures, ensuring synchronization between data and visual outputs for declarative rendering, and adapting reusable components to various scenarios. Such complexities make it particularly difficult for state-of-the-art large vision-language models (VLMs) to generate accurate and functional code directly from design images. To address these challenges, we propose a reflective agentic workflow that synthesizes high-quality image-text data to capture the diverse characteristics of FE development. This workflow automates the extraction of self-contained\footnote{A \textbf{self-contained} code snippet is one that encapsulates all necessary logic, styling, and dependencies, ensuring it functions independently without requiring external imports or context.} code snippets from real-world projects, renders the corresponding visual outputs, and generates detailed descriptions that link design elements to functional code. To further expand the scope and utility of the synthesis, we introduce three data synthesis strategies: Evolution-based synthesis, which enables scalable and diverse dataset expansion; Waterfall-Model-based synthesis, which generates logically coherent code derived from system requirements; and Additive Development synthesis, which iteratively increases the complexity of human-authored components. We build a large vision-language model, Flame, trained on the synthesized datasets and demonstrate its effectiveness in generating React code via the $\text{pass}@k$ metric. Our results suggest that a code VLM trained to interpret images before code generation may achieve better performance.
Abstract:We introduce a benchmark to evaluate the capability of AI to solve problems in theoretical physics, focusing on high-energy theory and cosmology. The first iteration of our benchmark consists of 57 problems of varying difficulty, from undergraduate to research level. These problems are novel in the sense that they do not come from public problem collections. We evaluate our data set on various open and closed language models, including o3-mini, o1, DeepSeek-R1, GPT-4o and versions of Llama and Qwen. While we find impressive progress in model performance with the most recent models, our research-level difficulty problems are mostly unsolved. We address challenges of auto-verifiability and grading, and discuss common failure modes. While currently state-of-the art models are still of limited use for researchers, our results show that AI assisted theoretical physics research may become possible in the near future. We discuss the main obstacles towards this goal and possible strategies to overcome them. The public problems and solutions, results for various models, and updates to the data set and score distribution, are available on the website of the dataset tpbench.org.
Abstract:Vision and language are the two foundational senses for humans, and they build up our cognitive ability and intelligence. While significant breakthroughs have been made in AI language ability, artificial visual intelligence, especially the ability to generate and simulate the world we see, is far lagging behind. To facilitate the development and accessibility of artificial visual intelligence, we created Open-Sora, an open-source video generation model designed to produce high-fidelity video content. Open-Sora supports a wide spectrum of visual generation tasks, including text-to-image generation, text-to-video generation, and image-to-video generation. The model leverages advanced deep learning architectures and training/inference techniques to enable flexible video synthesis, which could generate video content of up to 15 seconds, up to 720p resolution, and arbitrary aspect ratios. Specifically, we introduce Spatial-Temporal Diffusion Transformer (STDiT), an efficient diffusion framework for videos that decouples spatial and temporal attention. We also introduce a highly compressive 3D autoencoder to make representations compact and further accelerate training with an ad hoc training strategy. Through this initiative, we aim to foster innovation, creativity, and inclusivity within the community of AI content creation. By embracing the open-source principle, Open-Sora democratizes full access to all the training/inference/data preparation codes as well as model weights. All resources are publicly available at: https://github.com/hpcaitech/Open-Sora.
Abstract:In this paper, we present HalluCana, a canary lookahead to detect and correct factuality hallucinations of Large Language Models (LLMs) in long-form generation. HalluCana detects and intervenes as soon as traces of hallucination emerge, during and even before generation. To support timely detection, we exploit the internal factuality representation in the LLM hidden space, where we investigate various proxies to the LLMs' factuality self-assessment, and discuss its relation to the models' context familiarity from their pre-training. On biography generation, our method improves generation quality by up to 2.5x, while consuming over 6 times less compute.
Abstract:Emerging digital twin technology has the potential to revolutionize voltage control in power systems. However, the state-of-the-art digital twin method suffers from low computational and sampling efficiency, which hinders its applications. To address this issue, we propose a Gumbel-Consistency Digital Twin (GC-DT) method that enhances voltage control with improved computational and sampling efficiency. First, the proposed method incorporates a Gumbel-based strategy improvement that leverages the Gumbel-top trick to enhance non-repetitive sampling actions and reduce the reliance on Monte Carlo Tree Search simulations, thereby improving computational efficiency. Second, a consistency loss function aligns predicted hidden states with actual hidden states in the latent space, which increases both prediction accuracy and sampling efficiency. Experiments on IEEE 123-bus, 34-bus, and 13-bus systems demonstrate that the proposed GC-DT outperforms the state-of-the-art DT method in both computational and sampling efficiency.
Abstract:Recent advancements in text-to-image diffusion models have significantly transformed visual content generation, yet their application in specialized fields such as interior design remains underexplored. In this paper, we present RoomDiffusion, a pioneering diffusion model meticulously tailored for the interior design industry. To begin with, we build from scratch a whole data pipeline to update and evaluate data for iterative model optimization. Subsequently, techniques such as multiaspect training, multi-stage fine-tune and model fusion are applied to enhance both the visual appeal and precision of the generated results. Lastly, leveraging the latent consistency Distillation method, we distill and expedite the model for optimal efficiency. Unlike existing models optimized for general scenarios, RoomDiffusion addresses specific challenges in interior design, such as lack of fashion, high furniture duplication rate, and inaccurate style. Through our holistic human evaluation protocol with more than 20 professional human evaluators, RoomDiffusion demonstrates industry-leading performance in terms of aesthetics, accuracy, and efficiency, surpassing all existing open source models such as stable diffusion and SDXL.
Abstract:Large Language Models (LLMs) are reported to hold undesirable attestation bias on inference tasks: when asked to predict if a premise P entails a hypothesis H, instead of considering H's conditional truthfulness entailed by P, LLMs tend to use the out-of-context truth label of H as a fragile proxy. In this paper, we propose a pipeline that exploits this bias to do explicit inductive inference. Our pipeline uses an LLM to transform a premise into a set of attested alternatives, and then aggregate answers of the derived new entailment inquiries to support the original inference prediction. On a directional predicate entailment benchmark, we demonstrate that by applying this simple pipeline, we can improve the overall performance of LLMs on inference and substantially alleviate the impact of their attestation bias.
Abstract:Efficient data transmission and reasonable task allocation are important to improve multi-robot exploration efficiency. However, most communication data types typically contain redundant information and thus require massive communication volume. Moreover, exploration-oriented task allocation is far from trivial and becomes even more challenging for resource-limited unmanned aerial vehicles (UAVs). In this paper, we propose a fast and communication-efficient multi-UAV exploration method for exploring large environments. We first design a multi-robot dynamic topological graph (MR-DTG) consisting of nodes representing the explored and exploring regions and edges connecting nodes. Supported by MR-DTG, our method achieves efficient communication by only transferring the necessary information required by exploration planning. To further improve the exploration efficiency, a hierarchical multi-UAV exploration method is devised using MR-DTG. Specifically, the \emph{graph Voronoi partition} is used to allocate MR-DTG's nodes to the closest UAVs, considering the actual motion cost, thus achieving reasonable task allocation. To our knowledge, this is the first work to address multi-UAV exploration using \emph{graph Voronoi partition}. The proposed method is compared with a state-of-the-art method in simulations. The results show that the proposed method is able to reduce the exploration time and communication volume by up to 38.3\% and 95.5\%, respectively. Finally, the effectiveness of our method is validated in the real-world experiment with 6 UAVs. We will release the source code to benefit the community.
Abstract:Spatio-temporal (ST) trajectories are sequences of timestamped locations, which enable a variety of analyses that in turn enable important real-world applications. It is common to map trajectories to vectors, called embeddings, before subsequent analyses. Thus, the qualities of embeddings are very important. Methods for pre-training embeddings, which leverage unlabeled trajectories for training universal embeddings, have shown promising applicability across different tasks, thus attracting considerable interest. However, research progress on this topic faces two key challenges: a lack of a comprehensive overview of existing methods, resulting in several related methods not being well-recognized, and the absence of a unified pipeline, complicating the development new methods and the analysis of methods. To overcome these obstacles and advance the field of pre-training of trajectory embeddings, we present UniTE, a survey and a unified pipeline for this domain. In doing so, we present a comprehensive list of existing methods for pre-training trajectory embeddings, which includes methods that either explicitly or implicitly employ pre-training techniques. Further, we present a unified and modular pipeline with publicly available underlying code, simplifying the process of constructing and evaluating methods for pre-training trajectory embeddings. Additionally, we contribute a selection of experimental results using the proposed pipeline on real-world datasets.