Abstract:Reconfigurable intelligent surface (RIS), composed of nearly passive elements, is regarded as one of the potential paradigms to support multi-gigabit data in real-time. However, in traditional CSI (channel state information) driven frame, the training overhead of channel estimation greatly increases as the number of RIS elements increases to intelligently manipulate the reflected signals. To conveniently use the reflected signal without complex CSI feedback, in this paper we propose a position-aided phase configuration scheme based on the property of Fresnel zone. In particular, we design the impedance based discrete RIS elements with joint absorption mode and reflection mode considering the fabrication complexities, which integrated the property of the Fresnel zone to resist the impact of position error. Then, with joint absorption and 1-bit reflection mode elements, we develop the two-step position-aided ON/OFF states judgement (TPOSJ) scheme and the frame structure to control the ON/OFF state of RIS, followed by analyzing the impacts of mobility and position error on our proposed scheme. Also, we derive the Helmholtz-Kirchhoff integral theorem based power flow. Simulations show that the proposed scheme can manipulate the ON/OFF state intelligently without complex CSI, thus verifying the practical application of our proposed scheme.
Abstract:Simulating the dynamics of open quantum systems coupled to non-Markovian environments remains an outstanding challenge due to exponentially scaling computational costs. We present an artificial intelligence strategy to overcome this obstacle by integrating the neural quantum states approach into the dissipaton-embedded quantum master equation in second quantization (DQME-SQ). Our approach utilizes restricted Boltzmann machines (RBMs) to compactly represent the reduced density tensor, explicitly encoding the combined effects of system-environment correlations and nonMarkovian memory. Applied to model systems exhibiting prominent effects of system-environment correlation and non-Markovian memory, our approach achieves comparable accuracy to conventional hierarchical equations of motion, while requiring significantly fewer dynamical variables. The novel RBM-based DQME-SQ approach paves the way for investigating non-Markovian open quantum dynamics in previously intractable regimes, with implications spanning various frontiers of modern science.
Abstract:Pre-training a model and then fine-tuning it on downstream tasks has demonstrated significant success in the 2D image and NLP domains. However, due to the unordered and non-uniform density characteristics of point clouds, it is non-trivial to explore the prior knowledge of point clouds and pre-train a point cloud backbone. In this paper, we propose a novel pre-training method called Point cloud Diffusion pre-training (PointDif). We consider the point cloud pre-training task as a conditional point-to-point generation problem and introduce a conditional point generator. This generator aggregates the features extracted by the backbone and employs them as the condition to guide the point-to-point recovery from the noisy point cloud, thereby assisting the backbone in capturing both local and global geometric priors as well as the global point density distribution of the object. We also present a recurrent uniform sampling optimization strategy, which enables the model to uniformly recover from various noise levels and learn from balanced supervision. Our PointDif achieves substantial improvement across various real-world datasets for diverse downstream tasks such as classification, segmentation and detection. Specifically, PointDif attains 70.0% mIoU on S3DIS Area 5 for the segmentation task and achieves an average improvement of 2.4% on ScanObjectNN for the classification task compared to TAP. Furthermore, our pre-training framework can be flexibly applied to diverse point cloud backbones and bring considerable gains.
Abstract:Microservice architecture has sprung up over recent years for managing enterprise applications, due to its ability to independently deploy and scale services. Despite its benefits, ensuring the reliability and safety of a microservice system remains highly challenging. Existing anomaly detection algorithms based on a single data modality (i.e., metrics, logs, or traces) fail to fully account for the complex correlations and interactions between different modalities, leading to false negatives and false alarms, whereas incorporating more data modalities can offer opportunities for further performance gain. As a fresh attempt, we propose in this paper a semi-supervised graph-based anomaly detection method, MSTGAD, which seamlessly integrates all available data modalities via attentive multi-modal learning. First, we extract and normalize features from the three modalities, and further integrate them using a graph, namely MST (microservice system twin) graph, where each node represents a service instance and the edge indicates the scheduling relationship between different service instances. The MST graph provides a virtual representation of the status and scheduling relationships among service instances of a real-world microservice system. Second, we construct a transformer-based neural network with both spatial and temporal attention mechanisms to model the inter-correlations between different modalities and temporal dependencies between the data points. This enables us to detect anomalies automatically and accurately in real-time. The source code of MSTGAD is publicly available at https://github.com/alipay/microservice_system_twin_graph_based_anomaly_detection.
Abstract:Multi-label image classification (MLIC) is a fundamental and practical task, which aims to assign multiple possible labels to an image. In recent years, many deep convolutional neural network (CNN) based approaches have been proposed which model label correlations to discover semantics of labels and learn semantic representations of images. This paper advances this research direction by improving both the modeling of label correlations and the learning of semantic representations. On the one hand, besides the local semantics of each label, we propose to further explore global semantics shared by multiple labels. On the other hand, existing approaches mainly learn the semantic representations at the last convolutional layer of a CNN. But it has been noted that the image representations of different layers of CNN capture different levels or scales of features and have different discriminative abilities. We thus propose to learn semantic representations at multiple convolutional layers. To this end, this paper designs a Multi-layered Semantic Representation Network (MSRN) which discovers both local and global semantics of labels through modeling label correlations and utilizes the label semantics to guide the semantic representations learning at multiple layers through an attention mechanism. Extensive experiments on four benchmark datasets including VOC 2007, COCO, NUS-WIDE, and Apparel show a competitive performance of the proposed MSRN against state-of-the-art models.