Sherman
Abstract:The surging development of Artificial Intelligence-Generated Content (AIGC) marks a transformative era of the content creation and production. Edge servers promise attractive benefits, e.g., reduced service delay and backhaul traffic load, for hosting AIGC services compared to cloud-based solutions. However, the scarcity of available resources on the edge pose significant challenges in deploying generative AI models. In this paper, by characterizing the resource and delay demands of typical generative AI models, we find that the consumption of storage and GPU memory, as well as the model switching delay represented by I/O delay during the preloading phase, are significant and vary across models. These multidimensional coupling factors render it difficult to make efficient edge model deployment decisions. Hence, we present a collaborative edge-cloud framework aiming to properly manage generative AI model deployment on the edge. Specifically, we formulate edge model deployment problem considering heterogeneous features of models as an optimization problem, and propose a model-level decision selection algorithm to solve it. It enables pooled resource sharing and optimizes the trade-off between resource consumption and delay in edge generative AI model deployment. Simulation results validate the efficacy of the proposed algorithm compared with baselines, demonstrating its potential to reduce overall costs by providing feature-aware model deployment decisions.
Abstract:In this paper, we propose a secure computation offloading scheme (SCOS) in intelligently connected vehicle (ICV) networks, aiming to minimize overall latency of computing via offloading part of computational tasks to nearby servers in small cell base stations (SBSs), while securing the information delivered during offloading and feedback phases via physical layer security. Existing computation offloading schemes usually neglected time-varying characteristics of channels and their corresponding secrecy rates, resulting in an inappropriate task partition ratio and a large secrecy outage probability. To address these issues, we utilize an ergodic secrecy rate to determine how many tasks are offloaded to the edge, where ergodic secrecy rate represents the average secrecy rate over all realizations in a time-varying wireless channel. Adaptive wiretap code rates are proposed with a secrecy outage constraint to match time-varying wireless channels. In addition, the proposed secure beamforming and artificial noise (AN) schemes can improve the ergodic secrecy rates of uplink and downlink channels even without eavesdropper channel state information (CSI). Numerical results demonstrate that the proposed schemes have a shorter system delay than the strategies neglecting time-varying characteristics.
Abstract:In this paper, we investigate a computing task scheduling problem in space-air-ground integrated network (SAGIN) for delay-oriented Internet of Things (IoT) services. In the considered scenario, an unmanned aerial vehicle (UAV) collects computing tasks from IoT devices and then makes online offloading decisions, in which the tasks can be processed at the UAV or offloaded to the nearby base station or the remote satellite. Our objective is to design a task scheduling policy that minimizes offloading and computing delay of all tasks given the UAV energy capacity constraint. To this end, we first formulate the online scheduling problem as an energy-constrained Markov decision process (MDP). Then, considering the task arrival dynamics, we develop a novel deep risk-sensitive reinforcement learning algorithm. Specifically, the algorithm evaluates the risk, which measures the energy consumption that exceeds the constraint, for each state and searches the optimal parameter weighing the minimization of delay and risk while learning the optimal policy. Extensive simulation results demonstrate that the proposed algorithm can reduce the task processing delay by up to 30% compared to probabilistic configuration methods while satisfying the UAV energy capacity constraint.