Sherman
Abstract:In this paper, we investigate a resource allocation and model retraining problem for dynamic wireless networks by utilizing incremental learning, in which the digital twin (DT) scheme is employed for decision making. A two-timescale framework is proposed for computation resource allocation, mobile user association, and incremental training of user models. To obtain an optimal resource allocation and incremental learning policy, we propose an efficient two-timescale scheme based on hybrid DT-physical architecture with the objective to minimize long-term system delay. Specifically, in the large-timescale, base stations will update the user association and implement incremental learning decisions based on statistical state information from the DT system. Then, in the short timescale, an effective computation resource allocation and incremental learning data generated from the DT system is designed based on deep reinforcement learning (DRL), thus reducing the network system's delay in data transmission, data computation, and model retraining steps. Simulation results demonstrate the effectiveness of the proposed two-timescale scheme compared with benchmark schemes.
Abstract:In this paper, we propose a novel dependency-aware task scheduling strategy for dynamic unmanned aerial vehicle-assisted connected autonomous vehicles (CAVs). Specifically, different computation tasks of CAVs consisting of multiple dependency subtasks are judiciously assigned to nearby CAVs or the base station for promptly completing tasks. Therefore, we formulate a joint scheduling priority and subtask assignment optimization problem with the objective of minimizing the average task completion time. The problem aims at improving the long-term system performance, which is reformulated as a Markov decision process. To solve the problem, we further propose a diffusion-based reinforcement learning algorithm, named Synthetic DDQN based Subtasks Scheduling, which can make adaptive task scheduling decision in real time. A diffusion model-based synthetic experience replay is integrated into the reinforcement learning framework, which can generate sufficient synthetic data in experience replay buffer, thereby significantly accelerating convergence and improving sample efficiency. Simulation results demonstrate the effectiveness of the proposed algorithm on reducing task completion time, comparing to benchmark schemes.
Abstract:In this paper, we propose a novel road side unit (RSU)-assisted cooperative sensing scheme for connected autonomous vehicles (CAVs), with the objective to reduce completion time of sensing tasks. Specifically, LiDAR sensing data of both RSU and CAVs are selectively fused to improve sensing accuracy, and computing resources therein are cooperatively utilized to process tasks in real time. To this end, for each task, we decide whether to compute it at the CAV or at the RSU and allocate resources accordingly. We first formulate a joint task placement and resource allocation problem for minimizing the total task completion time while satisfying sensing accuracy constraint. We then decouple the problem into two subproblems and propose a two-layer algorithm to solve them. The outer layer first makes task placement decision based on the Gibbs sampling theory, while the inner layer makes spectrum and computing resource allocation decisions via greedy-based and convex optimization subroutines, respectively. Simulation results based on the autonomous driving simulator CARLA demonstrate the effectiveness of the proposed scheme in reducing total task completion time, comparing to benchmark schemes.
Abstract:In this paper, we study a vehicle selection problem for federated learning (FL) over vehicular networks. Specifically, we design a mobility-aware vehicular federated learning (MAVFL) scheme in which vehicles drive through a road segment to perform FL. Some vehicles may drive out of the segment which leads to unsuccessful training. In the proposed scheme, the real-time successful training participation ratio is utilized to implement vehicle selection. We conduct the convergence analysis to indicate the influence of vehicle mobility on training loss. Furthermore, we propose a multi-armed bandit-based vehicle selection algorithm to minimize the utility function considering training loss and delay. The simulation results show that compared with baselines, the proposed algorithm can achieve better training performance with approximately 28\% faster convergence.
Abstract:Speech-based automatic detection of Alzheimer's disease (AD) and depression has attracted increased attention. Confidence estimation is crucial for a trust-worthy automatic diagnostic system which informs the clinician about the confidence of model predictions and helps reduce the risk of misdiagnosis. This paper investigates confidence estimation for automatic detection of AD and depression based on clinical interviews. A novel Bayesian approach is proposed which uses a dynamic Dirichlet prior distribution to model the second-order probability of the predictive distribution. Experimental results on the publicly available ADReSS and DAIC-WOZ datasets demonstrate that the proposed method outperforms a range of baselines for both classification accuracy and confidence estimation.
Abstract:In this letter, we investigate the channel estimation problem for MIMO wireless communication systems with movable antennas (MAs) at both the transmitter (Tx) and receiver (Rx). To achieve high channel estimation accuracy with low pilot training overhead, we propose a tensor decomposition-based method for estimating the parameters of multi-path channel components, including their azimuth and elevation angles, as well as complex gain coefficients, thereby reconstructing the wireless channel between any pair of Tx and Rx MA positions in the Tx and Rx regions. First, we introduce a two-stage Tx-Rx successive antenna movement pattern for pilot training, such that the received pilot signals in both stages can be expressed as a third-order tensor. Then, we obtain the factor matrices of the tensor via the canonical polyadic decomposition, and thereby estimate the angle/gain parameters for enabling the channel reconstruction between arbitrary Tx/Rx MA positions. In addition, we analyze the uniqueness condition of the tensor decomposition, which ensures the complete channel reconstruction between the whole Tx and Rx regions based on the channel measurements at only a finite number of Tx/Rx MA positions. Finally, simulation results are presented to evaluate the proposed tensor decomposition-based method as compared to existing methods, in terms of channel estimation accuracy and pilot overhead.
Abstract:The early detection of suicide risk is important since it enables the intervention to prevent potential suicide attempts. This paper studies the automatic detection of suicide risk based on spontaneous speech from adolescents, and collects a Mandarin dataset with 15 hours of suicide speech from more than a thousand adolescents aged from ten to eighteen for our experiments. To leverage the diverse acoustic and linguistic features embedded in spontaneous speech, both the Whisper speech model and textual large language models (LLMs) are used for suicide risk detection. Both all-parameter finetuning and parameter-efficient finetuning approaches are used to adapt the pre-trained models for suicide risk detection, and multiple audio-text fusion approaches are evaluated to combine the representations of Whisper and the LLM. The proposed system achieves a detection accuracy of 0.807 and an F1-score of 0.846 on the test set with 119 subjects, indicating promising potential for real suicide risk detection applications.
Abstract:In recent years, text-to-speech (TTS) technology has witnessed impressive advancements, particularly with large-scale training datasets, showcasing human-level speech quality and impressive zero-shot capabilities on unseen speakers. However, despite human subjective evaluations, such as the mean opinion score (MOS), remaining the gold standard for assessing the quality of synthetic speech, even state-of-the-art TTS approaches have kept human feedback isolated from training that resulted in mismatched training objectives and evaluation metrics. In this work, we investigate a novel topic of integrating subjective human evaluation into the TTS training loop. Inspired by the recent success of reinforcement learning from human feedback, we propose a comprehensive sampling-annotating-learning framework tailored to TTS optimization, namely uncertainty-aware optimization (UNO). Specifically, UNO eliminates the need for a reward model or preference data by directly maximizing the utility of speech generations while considering the uncertainty that lies in the inherent variability in subjective human speech perception and evaluations. Experimental results of both subjective and objective evaluations demonstrate that UNO considerably improves the zero-shot performance of TTS models in terms of MOS, word error rate, and speaker similarity. Additionally, we present a remarkable ability of UNO that it can adapt to the desired speaking style in emotional TTS seamlessly and flexibly.
Abstract:Speech emotion recognition is a challenging classification task with natural emotional speech, especially when the distribution of emotion types is imbalanced in the training and test data. In this case, it is more difficult for a model to learn to separate minority classes, resulting in those sometimes being ignored or frequently misclassified. Previous work has utilised class weighted loss for training, but problems remain as it sometimes causes over-fitting for minor classes or under-fitting for major classes. This paper presents the system developed by a multi-site team for the participation in the Odyssey 2024 Emotion Recognition Challenge Track-1. The challenge data has the aforementioned properties and therefore the presented systems aimed to tackle these issues, by introducing focal loss in optimisation when applying class weighted loss. Specifically, the focal loss is further weighted by prior-based class weights. Experimental results show that combining these two approaches brings better overall performance, by sacrificing performance on major classes. The system further employs a majority voting strategy to combine the outputs of an ensemble of 7 models. The models are trained independently, using different acoustic features and loss functions - with the aim to have different properties for different data. Hence these models show different performance preferences on major classes and minor classes. The ensemble system output obtained the best performance in the challenge, ranking top-1 among 68 submissions. It also outperformed all single models in our set. On the Odyssey 2024 Emotion Recognition Challenge Task-1 data the system obtained a Macro-F1 score of 35.69% and an accuracy of 37.32%.
Abstract:Advances in large language models raise the question of how alignment techniques will adapt as models become increasingly complex and humans will only be able to supervise them weakly. Weak-to-Strong mimics such a scenario where weak model supervision attempts to harness the full capabilities of a much stronger model. This work extends Weak-to-Strong to WeakS-to-Strong by exploring an ensemble of weak models which simulate the variability in human opinions. Confidence scores are estimated using a Bayesian approach to guide the WeakS-to-Strong generalization. Furthermore, we extend the application of WeakS-to-Strong from text classification tasks to text generation tasks where more advanced strategies are investigated for supervision. Moreover, direct preference optimization is applied to advance the student model's preference learning, beyond the basic learning framework of teacher forcing. Results demonstrate the effectiveness of the proposed approach for the reliability of a strong student model, showing potential for superalignment.