Sherman
Abstract:Due to their high maneuverability, flexible deployment, and low cost, unmanned aerial vehicles (UAVs) are expected to play a pivotal role in not only communication, but also sensing. Especially by exploiting the ultra-wide bandwidth of terahertz (THz) bands, integrated sensing and communication (ISAC)-empowered UAV has been a promising technology of 6G space-air-ground integrated networks. In this article, we systematically investigate the key techniques and essential obstacles for THz-ISAC-empowered UAV from a transceiver design perspective, with the highlight of its major challenges and key technologies. Specifically, we discuss the THz-ISAC-UAV wireless propagation environment, based on which several channel characteristics for communication and sensing are revealed. We point out the transceiver payload design peculiarities for THz-ISAC-UAV from the perspective of antenna design, radio frequency front-end, and baseband signal processing. To deal with the specificities faced by the payload, we shed light on three key technologies, i.e., hybrid beamforming for ultra-massive MIMO-ISAC, power-efficient THz-ISAC waveform design, as well as communication and sensing channel state information acquisition, and extensively elaborate their concepts and key issues. More importantly, future research directions and associated open problems are presented, which may unleash the full potential of THz-ISAC-UAV for 6G wireless networks.
Abstract:The group recommendation (GR) aims to suggest items for a group of users in social networks. Existing work typically considers individual preferences as the sole factor in aggregating group preferences. Actually, social influence is also an important factor in modeling users' contributions to the final group decision. However, existing methods either neglect the social influence of individual members or bundle preferences and social influence together as a unified representation. As a result, these models emphasize the preferences of the majority within the group rather than the actual interaction items, which we refer to as the preference bias issue in GR. Moreover, the self-supervised learning (SSL) strategies they designed to address the issue of group data sparsity fail to account for users' contextual social weights when regulating group representations, leading to suboptimal results. To tackle these issues, we propose a novel model based on Disentangled Modeling of Preferences and Social Influence for Group Recommendation (DisRec). Concretely, we first design a user-level disentangling network to disentangle the preferences and social influence of group members with separate embedding propagation schemes based on (hyper)graph convolution networks. We then introduce a socialbased contrastive learning strategy, selectively excluding user nodes based on their social importance to enhance group representations and alleviate the group-level data sparsity issue. The experimental results demonstrate that our model significantly outperforms state-of-the-art methods on two realworld datasets.
Abstract:The 1st SpeechWellness Challenge (SW1) aims to advance methods for detecting suicidal risk in adolescents using speech analysis techniques. Suicide among adolescents is a critical public health issue globally. Early detection of suicidal tendencies can lead to timely intervention and potentially save lives. Traditional methods of assessment often rely on self-reporting or clinical interviews, which may not always be accessible. The SW1 challenge addresses this gap by exploring speech as a non-invasive and readily available indicator of mental health. We release the SW1 dataset which contains speech recordings from 600 adolescents aged 10-18 years. By focusing on speech generated from natural tasks, the challenge seeks to uncover patterns and markers that correlate with suicidal risk.
Abstract:Objective: Predicting children's future levels of externalizing problems helps to identify children at risk and guide targeted prevention. Existing studies have shown that mothers providing support in response to children's dysregulation was associated with children's lower levels of externalizing problems. The current study aims to evaluate and improve the accuracy of predicting children's externalizing problems with mother-child interaction dynamics. Method: This study used mother-child interaction dynamics during a challenging puzzle task to predict children's externalizing problems six months later (N=101, 46 boys, Mage=57.41 months, SD=6.58). Performance of the Residual Dynamic Structural Equation Model (RDSEM) was compared with the Attention-based Sequential Behavior Interaction Modeling (ASBIM) model, developed using the deep learning techniques. Results: The RDSEM revealed that children whose mothers provided more autonomy support after increases of child defeat had lower levels of externalizing problems. Five-fold cross-validation showed that the RDSEM had good prediction accuracy. The ASBIM model further improved prediction accuracy, especially after including child inhibitory control as a personalized individual feature. Conclusions: The dynamic process of mother-child interaction provides important information for predicting children's externalizing problems, especially maternal autonomy supportive response to child defeat. The deep learning model is a useful tool to further improve prediction accuracy.
Abstract:In this paper, we investigate a resource allocation and model retraining problem for dynamic wireless networks by utilizing incremental learning, in which the digital twin (DT) scheme is employed for decision making. A two-timescale framework is proposed for computation resource allocation, mobile user association, and incremental training of user models. To obtain an optimal resource allocation and incremental learning policy, we propose an efficient two-timescale scheme based on hybrid DT-physical architecture with the objective to minimize long-term system delay. Specifically, in the large-timescale, base stations will update the user association and implement incremental learning decisions based on statistical state information from the DT system. Then, in the short timescale, an effective computation resource allocation and incremental learning data generated from the DT system is designed based on deep reinforcement learning (DRL), thus reducing the network system's delay in data transmission, data computation, and model retraining steps. Simulation results demonstrate the effectiveness of the proposed two-timescale scheme compared with benchmark schemes.
Abstract:In this paper, we propose a novel road side unit (RSU)-assisted cooperative sensing scheme for connected autonomous vehicles (CAVs), with the objective to reduce completion time of sensing tasks. Specifically, LiDAR sensing data of both RSU and CAVs are selectively fused to improve sensing accuracy, and computing resources therein are cooperatively utilized to process tasks in real time. To this end, for each task, we decide whether to compute it at the CAV or at the RSU and allocate resources accordingly. We first formulate a joint task placement and resource allocation problem for minimizing the total task completion time while satisfying sensing accuracy constraint. We then decouple the problem into two subproblems and propose a two-layer algorithm to solve them. The outer layer first makes task placement decision based on the Gibbs sampling theory, while the inner layer makes spectrum and computing resource allocation decisions via greedy-based and convex optimization subroutines, respectively. Simulation results based on the autonomous driving simulator CARLA demonstrate the effectiveness of the proposed scheme in reducing total task completion time, comparing to benchmark schemes.
Abstract:In this paper, we propose a novel dependency-aware task scheduling strategy for dynamic unmanned aerial vehicle-assisted connected autonomous vehicles (CAVs). Specifically, different computation tasks of CAVs consisting of multiple dependency subtasks are judiciously assigned to nearby CAVs or the base station for promptly completing tasks. Therefore, we formulate a joint scheduling priority and subtask assignment optimization problem with the objective of minimizing the average task completion time. The problem aims at improving the long-term system performance, which is reformulated as a Markov decision process. To solve the problem, we further propose a diffusion-based reinforcement learning algorithm, named Synthetic DDQN based Subtasks Scheduling, which can make adaptive task scheduling decision in real time. A diffusion model-based synthetic experience replay is integrated into the reinforcement learning framework, which can generate sufficient synthetic data in experience replay buffer, thereby significantly accelerating convergence and improving sample efficiency. Simulation results demonstrate the effectiveness of the proposed algorithm on reducing task completion time, comparing to benchmark schemes.
Abstract:In this paper, we study a vehicle selection problem for federated learning (FL) over vehicular networks. Specifically, we design a mobility-aware vehicular federated learning (MAVFL) scheme in which vehicles drive through a road segment to perform FL. Some vehicles may drive out of the segment which leads to unsuccessful training. In the proposed scheme, the real-time successful training participation ratio is utilized to implement vehicle selection. We conduct the convergence analysis to indicate the influence of vehicle mobility on training loss. Furthermore, we propose a multi-armed bandit-based vehicle selection algorithm to minimize the utility function considering training loss and delay. The simulation results show that compared with baselines, the proposed algorithm can achieve better training performance with approximately 28\% faster convergence.
Abstract:Speech-based automatic detection of Alzheimer's disease (AD) and depression has attracted increased attention. Confidence estimation is crucial for a trust-worthy automatic diagnostic system which informs the clinician about the confidence of model predictions and helps reduce the risk of misdiagnosis. This paper investigates confidence estimation for automatic detection of AD and depression based on clinical interviews. A novel Bayesian approach is proposed which uses a dynamic Dirichlet prior distribution to model the second-order probability of the predictive distribution. Experimental results on the publicly available ADReSS and DAIC-WOZ datasets demonstrate that the proposed method outperforms a range of baselines for both classification accuracy and confidence estimation.
Abstract:In this letter, we investigate the channel estimation problem for MIMO wireless communication systems with movable antennas (MAs) at both the transmitter (Tx) and receiver (Rx). To achieve high channel estimation accuracy with low pilot training overhead, we propose a tensor decomposition-based method for estimating the parameters of multi-path channel components, including their azimuth and elevation angles, as well as complex gain coefficients, thereby reconstructing the wireless channel between any pair of Tx and Rx MA positions in the Tx and Rx regions. First, we introduce a two-stage Tx-Rx successive antenna movement pattern for pilot training, such that the received pilot signals in both stages can be expressed as a third-order tensor. Then, we obtain the factor matrices of the tensor via the canonical polyadic decomposition, and thereby estimate the angle/gain parameters for enabling the channel reconstruction between arbitrary Tx/Rx MA positions. In addition, we analyze the uniqueness condition of the tensor decomposition, which ensures the complete channel reconstruction between the whole Tx and Rx regions based on the channel measurements at only a finite number of Tx/Rx MA positions. Finally, simulation results are presented to evaluate the proposed tensor decomposition-based method as compared to existing methods, in terms of channel estimation accuracy and pilot overhead.