Abstract:The growing field of remote sensing faces a challenge: the ever-increasing size and volume of imagery data are exceeding the storage and transmission capabilities of satellite platforms. Efficient compression of remote sensing imagery is a critical solution to alleviate these burdens on satellites. However, existing compression methods are often too computationally expensive for satellites. With the continued advancement of compressed sensing theory, single-pixel imaging emerges as a powerful tool that brings new possibilities for on-orbit image compression. However, it still suffers from prolonged imaging times and the inability to perform high-resolution imaging, hindering its practical application. This paper advances the study of compressed sensing in remote sensing image compression, proposing Block Modulated Imaging (BMI). By requiring only a single exposure, BMI significantly enhances imaging acquisition speeds. Additionally, BMI obviates the need for digital micromirror devices and surpasses limitations in image resolution. Furthermore, we propose a novel decoding network specifically designed to reconstruct images compressed under the BMI framework. Leveraging the gated 3D convolutions and promoting efficient information flow across stages through a Two-Way Cross-Attention module, our decoding network exhibits demonstrably superior reconstruction performance. Extensive experiments conducted on multiple renowned remote sensing datasets unequivocally demonstrate the efficacy of our proposed method. To further validate its practical applicability, we developed and tested a prototype of the BMI-based camera, which has shown promising potential for on-orbit image compression. The code is available at https://github.com/Johnathan218/BMNet.
Abstract:In this work, we address the challenging problem of long-horizon goal-reaching policy learning from non-expert, action-free observation data. Unlike fully labeled expert data, our data is more accessible and avoids the costly process of action labeling. Additionally, compared to online learning, which often involves aimless exploration, our data provides useful guidance for more efficient exploration. To achieve our goal, we propose a novel subgoal guidance learning strategy. The motivation behind this strategy is that long-horizon goals offer limited guidance for efficient exploration and accurate state transition. We develop a diffusion strategy-based high-level policy to generate reasonable subgoals as waypoints, preferring states that more easily lead to the final goal. Additionally, we learn state-goal value functions to encourage efficient subgoal reaching. These two components naturally integrate into the off-policy actor-critic framework, enabling efficient goal attainment through informative exploration. We evaluate our method on complex robotic navigation and manipulation tasks, demonstrating a significant performance advantage over existing methods. Our ablation study further shows that our method is robust to observation data with various corruptions.
Abstract:Video Snapshot Compressive Imaging (SCI) uses a low-speed 2D camera to capture high-speed scenes as snapshot compressed measurements, followed by a reconstruction algorithm to retrieve the high-speed video frames. The fast evolving mobile devices and existing high-performance video SCI reconstruction algorithms motivate us to develop mobile reconstruction methods for real-world applications. Yet, it is still challenging to deploy previous reconstruction algorithms on mobile devices due to the complex inference process, let alone real-time mobile reconstruction. To the best of our knowledge, there is no video SCI reconstruction model designed to run on the mobile devices. Towards this end, in this paper, we present an effective approach for video SCI reconstruction, dubbed MobileSCI, which can run at real-time speed on the mobile devices for the first time. Specifically, we first build a U-shaped 2D convolution-based architecture, which is much more efficient and mobile-friendly than previous state-of-the-art reconstruction methods. Besides, an efficient feature mixing block, based on the channel splitting and shuffling mechanisms, is introduced as a novel bottleneck block of our proposed MobileSCI to alleviate the computational burden. Finally, a customized knowledge distillation strategy is utilized to further improve the reconstruction quality. Extensive results on both simulated and real data show that our proposed MobileSCI can achieve superior reconstruction quality with high efficiency on the mobile devices. Particularly, we can reconstruct a 256 X 256 X 8 snapshot compressed measurement with real-time performance (about 35 FPS) on an iPhone 15. Code is available at https://github.com/mcao92/MobileSCI.
Abstract:Diffusion models have shown strong competitiveness in offline reinforcement learning tasks by formulating decision-making as sequential generation. However, the practicality of these methods is limited due to the lengthy inference processes they require. In this paper, we address this problem by decomposing the sampling process of diffusion models into two decoupled subprocesses: 1) generating a feasible trajectory, which is a time-consuming process, and 2) optimizing the trajectory. With this decomposition approach, we are able to partially separate efficiency and quality factors, enabling us to simultaneously gain efficiency advantages and ensure quality assurance. We propose the Trajectory Diffuser, which utilizes a faster autoregressive model to handle the generation of feasible trajectories while retaining the trajectory optimization process of diffusion models. This allows us to achieve more efficient planning without sacrificing capability. To evaluate the effectiveness and efficiency of the Trajectory Diffuser, we conduct experiments on the D4RL benchmarks. The results demonstrate that our method achieves $\it 3$-$\it 10 \times$ faster inference speed compared to previous sequence modeling methods, while also outperforming them in terms of overall performance. https://github.com/RenMing-Huang/TrajectoryDiffuser Keywords: Reinforcement Learning and Efficient Planning and Diffusion Model
Abstract:Perceiving the world as 3D occupancy supports embodied agents to avoid collision with any types of obstacle. While open-vocabulary image understanding has prospered recently, how to bind the predicted 3D occupancy grids with open-world semantics still remains under-explored due to limited open-world annotations. Hence, instead of building our model from scratch, we try to blend 2D foundation models, specifically a depth model MiDaS and a semantic model CLIP, to lift the semantics to 3D space, thus fulfilling 3D occupancy. However, building upon these foundation models is not trivial. First, the MiDaS faces the depth ambiguity problem, i.e., it only produces relative depth but fails to estimate bin depth for feature lifting. Second, the CLIP image features lack high-resolution pixel-level information, which limits the 3D occupancy accuracy. Third, open vocabulary is often trapped by the long-tail problem. To address these issues, we propose VEON for Vocabulary-Enhanced Occupancy predictioN by not only assembling but also adapting these foundation models. We first equip MiDaS with a Zoedepth head and low-rank adaptation (LoRA) for relative-metric-bin depth transformation while reserving beneficial depth prior. Then, a lightweight side adaptor network is attached to the CLIP vision encoder to generate high-resolution features for fine-grained 3D occupancy prediction. Moreover, we design a class reweighting strategy to give priority to the tail classes. With only 46M trainable parameters and zero manual semantic labels, VEON achieves 15.14 mIoU on Occ3D-nuScenes, and shows the capability of recognizing objects with open-vocabulary categories, meaning that our VEON is label-efficient, parameter-efficient, and precise enough.
Abstract:Multispectral oriented object detection faces challenges due to both inter-modal and intra-modal discrepancies. Recent studies often rely on transformer-based models to address these issues and achieve cross-modal fusion detection. However, the quadratic computational complexity of transformers limits their performance. Inspired by the efficiency and lower complexity of Mamba in long sequence tasks, we propose Disparity-guided Multispectral Mamba (DMM), a multispectral oriented object detection framework comprised of a Disparity-guided Cross-modal Fusion Mamba (DCFM) module, a Multi-scale Target-aware Attention (MTA) module, and a Target-Prior Aware (TPA) auxiliary task. The DCFM module leverages disparity information between modalities to adaptively merge features from RGB and IR images, mitigating inter-modal conflicts. The MTA module aims to enhance feature representation by focusing on relevant target regions within the RGB modality, addressing intra-modal variations. The TPA auxiliary task utilizes single-modal labels to guide the optimization of the MTA module, ensuring it focuses on targets and their local context. Extensive experiments on the DroneVehicle and VEDAI datasets demonstrate the effectiveness of our method, which outperforms state-of-the-art methods while maintaining computational efficiency. Code will be available at https://github.com/Another-0/DMM.
Abstract:Brain-inspired Spiking Neural Networks (SNNs) leverage sparse spikes to represent information and process them in an asynchronous event-driven manner, offering an energy-efficient paradigm for the next generation of machine intelligence. However, the current focus within the SNN community prioritizes accuracy optimization through the development of large-scale models, limiting their viability in resource-constrained and low-power edge devices. To address this challenge, we introduce a lightweight and hardware-friendly Quantized SNN (Q-SNN) that applies quantization to both synaptic weights and membrane potentials. By significantly compressing these two key elements, the proposed Q-SNNs substantially reduce both memory usage and computational complexity. Moreover, to prevent the performance degradation caused by this compression, we present a new Weight-Spike Dual Regulation (WS-DR) method inspired by information entropy theory. Experimental evaluations on various datasets, including static and neuromorphic, demonstrate that our Q-SNNs outperform existing methods in terms of both model size and accuracy. These state-of-the-art results in efficiency and efficacy suggest that the proposed method can significantly improve edge intelligent computing.
Abstract:Existing solutions for 3D semantic occupancy prediction typically treat the task as a one-shot 3D voxel-wise segmentation perception problem. These discriminative methods focus on learning the mapping between the inputs and occupancy map in a single step, lacking the ability to gradually refine the occupancy map and the reasonable scene imaginative capacity to complete the local regions somewhere. In this paper, we introduce OccGen, a simple yet powerful generative perception model for the task of 3D semantic occupancy prediction. OccGen adopts a ''noise-to-occupancy'' generative paradigm, progressively inferring and refining the occupancy map by predicting and eliminating noise originating from a random Gaussian distribution. OccGen consists of two main components: a conditional encoder that is capable of processing multi-modal inputs, and a progressive refinement decoder that applies diffusion denoising using the multi-modal features as conditions. A key insight of this generative pipeline is that the diffusion denoising process is naturally able to model the coarse-to-fine refinement of the dense 3D occupancy map, therefore producing more detailed predictions. Extensive experiments on several occupancy benchmarks demonstrate the effectiveness of the proposed method compared to the state-of-the-art methods. For instance, OccGen relatively enhances the mIoU by 9.5%, 6.3%, and 13.3% on nuScenes-Occupancy dataset under the muli-modal, LiDAR-only, and camera-only settings, respectively. Moreover, as a generative perception model, OccGen exhibits desirable properties that discriminative models cannot achieve, such as providing uncertainty estimates alongside its multiple-step predictions.
Abstract:Given a source portrait, the automatic human body reshaping task aims at editing it to an aesthetic body shape. As the technology has been widely used in media, several methods have been proposed mainly focusing on generating optical flow to warp the body shape. However, those previous works only consider the local transformation of different body parts (arms, torso, and legs), ignoring the global affinity, and limiting the capacity to ensure consistency and quality across the entire body. In this paper, we propose a novel Adaptive Affinity-Graph Network (AAGN), which extracts the global affinity between different body parts to enhance the quality of the generated optical flow. Specifically, our AAGN primarily introduces the following designs: (1) we propose an Adaptive Affinity-Graph (AAG) Block that leverages the characteristic of a fully connected graph. AAG represents different body parts as nodes in an adaptive fully connected graph and captures all the affinities between nodes to obtain a global affinity map. The design could better improve the consistency between body parts. (2) Besides, for high-frequency details are crucial for photo aesthetics, a Body Shape Discriminator (BSD) is designed to extract information from both high-frequency and spatial domain. Particularly, an SRM filter is utilized to extract high-frequency details, which are combined with spatial features as input to the BSD. With this design, BSD guides the Flow Generator (FG) to pay attention to various fine details rather than rigid pixel-level fitting. Extensive experiments conducted on the BR-5K dataset demonstrate that our framework significantly enhances the aesthetic appeal of reshaped photos, marginally surpassing all previous work to achieve state-of-the-art in all evaluation metrics.
Abstract:Vision-based perception for autonomous driving requires an explicit modeling of a 3D space, where 2D latent representations are mapped and subsequent 3D operators are applied. However, operating on dense latent spaces introduces a cubic time and space complexity, which limits scalability in terms of perception range or spatial resolution. Existing approaches compress the dense representation using projections like Bird's Eye View (BEV) or Tri-Perspective View (TPV). Although efficient, these projections result in information loss, especially for tasks like semantic occupancy prediction. To address this, we propose SparseOcc, an efficient occupancy network inspired by sparse point cloud processing. It utilizes a lossless sparse latent representation with three key innovations. Firstly, a 3D sparse diffuser performs latent completion using spatially decomposed 3D sparse convolutional kernels. Secondly, a feature pyramid and sparse interpolation enhance scales with information from others. Finally, the transformer head is redesigned as a sparse variant. SparseOcc achieves a remarkable 74.9% reduction on FLOPs over the dense baseline. Interestingly, it also improves accuracy, from 12.8% to 14.1% mIOU, which in part can be attributed to the sparse representation's ability to avoid hallucinations on empty voxels.