Abstract:Intrusion Detection Systems (IDS) are crucial for safeguarding digital infrastructure. In dynamic network environments, both threat landscapes and normal operational behaviors are constantly changing, resulting in concept drift. While continuous learning mitigates the adverse effects of concept drift, insufficient attention to drift patterns and excessive preservation of outdated knowledge can still hinder the IDS's adaptability. In this paper, we propose SSF (Strategic Selection and Forgetting), a novel continual learning method for IDS, providing continuous model updates with a constantly refreshed memory buffer. Our approach features a strategic sample selection algorithm to select representative new samples and a strategic forgetting mechanism to drop outdated samples. The proposed strategic sample selection algorithm prioritizes new samples that cause the `drifted' pattern, enabling the model to better understand the evolving landscape. Additionally, we introduce strategic forgetting upon detecting significant drift by discarding outdated samples to free up memory, allowing the incorporation of more recent data. SSF captures evolving patterns effectively and ensures the model is aligned with the change of data patterns, significantly enhancing the IDS's adaptability to concept drift. The state-of-the-art performance of SSF on NSL-KDD and UNSW-NB15 datasets demonstrates its superior adaptability to concept drift for network intrusion detection.
Abstract:Speech enhancement is crucial in human-computer interaction, especially for ubiquitous devices. Ultrasound-based speech enhancement has emerged as an attractive choice because of its superior ubiquity and performance. However, inevitable interference from unexpected and unintended sources during audio-ultrasound data acquisition makes existing solutions rely heavily on human effort for data collection and processing. This leads to significant data scarcity that limits the full potential of ultrasound-based speech enhancement. To address this, we propose USpeech, a cross-modal ultrasound synthesis framework for speech enhancement with minimal human effort. At its core is a two-stage framework that establishes correspondence between visual and ultrasonic modalities by leveraging audible audio as a bridge. This approach overcomes challenges from the lack of paired video-ultrasound datasets and the inherent heterogeneity between video and ultrasound data. Our framework incorporates contrastive video-audio pre-training to project modalities into a shared semantic space and employs an audio-ultrasound encoder-decoder for ultrasound synthesis. We then present a speech enhancement network that enhances speech in the time-frequency domain and recovers the clean speech waveform via a neural vocoder. Comprehensive experiments show USpeech achieves remarkable performance using synthetic ultrasound data comparable to physical data, significantly outperforming state-of-the-art ultrasound-based speech enhancement baselines. USpeech is open-sourced at https://github.com/aiot-lab/USpeech/.
Abstract:The metaverse, emerging as a revolutionary platform for social and economic activities, provides various virtual services while posing security and privacy challenges. Wearable devices serve as bridges between the real world and the metaverse. To provide intelligent services without revealing users' privacy in the metaverse, leveraging federated learning (FL) to train models on local wearable devices is a promising solution. However, centralized model aggregation in traditional FL may suffer from external attacks, resulting in a single point of failure. Furthermore, the absence of incentive mechanisms may weaken users' participation during FL training, leading to degraded performance of the trained model and reduced quality of intelligent services. In this paper, we propose BF-Meta, a secure blockchain-empowered FL framework with decentralized model aggregation, to mitigate the negative influence of malicious users and provide secure virtual services in the metaverse. In addition, we design an incentive mechanism to give feedback to users based on their behaviors. Experiments conducted on five datasets demonstrate the effectiveness and applicability of BF-Meta.
Abstract:Edge Intelligence (EI) has been instrumental in delivering real-time, localized services by leveraging the computational capabilities of edge networks. The integration of Large Language Models (LLMs) empowers EI to evolve into the next stage: Edge General Intelligence (EGI), enabling more adaptive and versatile applications that require advanced understanding and reasoning capabilities. However, systematic exploration in this area remains insufficient. This survey delineates the distinctions between EGI and traditional EI, categorizing LLM-empowered EGI into three conceptual systems: centralized, hybrid, and decentralized. For each system, we detail the framework designs and review existing implementations. Furthermore, we evaluate the performance and throughput of various Small Language Models (SLMs) that are more suitable for development on edge devices. This survey provides researchers with a comprehensive vision of EGI, offering insights into its vast potential and establishing a foundation for future advancements in this rapidly evolving field.
Abstract:Millimeter wave (mmWave) based speech recognition provides more possibility for audio-related applications, such as conference speech transcription and eavesdropping. However, considering the practicality in real scenarios, latency and recognizable vocabulary size are two critical factors that cannot be overlooked. In this paper, we propose Radio2Text, the first mmWave-based system for streaming automatic speech recognition (ASR) with a vocabulary size exceeding 13,000 words. Radio2Text is based on a tailored streaming Transformer that is capable of effectively learning representations of speech-related features, paving the way for streaming ASR with a large vocabulary. To alleviate the deficiency of streaming networks unable to access entire future inputs, we propose the Guidance Initialization that facilitates the transfer of feature knowledge related to the global context from the non-streaming Transformer to the tailored streaming Transformer through weight inheritance. Further, we propose a cross-modal structure based on knowledge distillation (KD), named cross-modal KD, to mitigate the negative effect of low quality mmWave signals on recognition performance. In the cross-modal KD, the audio streaming Transformer provides feature and response guidance that inherit fruitful and accurate speech information to supervise the training of the tailored radio streaming Transformer. The experimental results show that our Radio2Text can achieve a character error rate of 5.7% and a word error rate of 9.4% for the recognition of a vocabulary consisting of over 13,000 words.
Abstract:Considering the microphone is easily affected by noise and soundproof materials, the radio frequency (RF) signal is a promising candidate to recover audio as it is immune to noise and can traverse many soundproof objects. In this paper, we introduce Radio2Speech, a system that uses RF signals to recover high quality speech from the loudspeaker. Radio2Speech can recover speech comparable to the quality of the microphone, advancing from recovering only single tone music or incomprehensible speech in existing approaches. We use Radio UNet to accurately recover speech in time-frequency domain from RF signals with limited frequency band. Also, we incorporate the neural vocoder to synthesize the speech waveform from the estimated time-frequency representation without using the contaminated phase. Quantitative and qualitative evaluations show that in quiet, noisy and soundproof scenarios, Radio2Speech achieves state-of-the-art performance and is on par with the microphone that works in quiet scenarios.
Abstract:Gaussian process (GP) models provide a powerful tool for prediction but are computationally prohibitive using large data sets. In such scenarios, one has to resort to approximate methods. We derive an approximation based on a composite likelihood approach using a general belief updating framework, which leads to a recursive computation of the predictor as well as of learning the hyper-parameters. We then provide an analysis of the derived composite GP model in predictive and information-theoretic terms. Finally, we evaluate the approximation with both synthetic data and a real-world application.