Abstract:Accurately estimating time of arrival (ETA) for trucks is crucial for optimizing transportation efficiency in logistics. GPS trajectory data offers valuable information for ETA, but challenges arise due to temporal sparsity, variable sequence lengths, and the interdependencies among multiple trucks. To address these issues, we propose the Temporal-Attribute-Spatial Tri-space Coordination (TAS-TsC) framework, which leverages three feature spaces-temporal, attribute, and spatial-to enhance ETA. Our framework consists of a Temporal Learning Module (TLM) using state space models to capture temporal dependencies, an Attribute Extraction Module (AEM) that transforms sequential features into structured attribute embeddings, and a Spatial Fusion Module (SFM) that models the interactions among multiple trajectories using graph representation learning.These modules collaboratively learn trajectory embeddings, which are then used by a Downstream Prediction Module (DPM) to estimate arrival times. We validate TAS-TsC on real truck trajectory datasets collected from Shenzhen, China, demonstrating its superior performance compared to existing methods.
Abstract:Attribute graphs are ubiquitous in multimedia applications, and graph representation learning (GRL) has been successful in analyzing attribute graph data. However, incomplete graph data and missing node attributes can have a negative impact on media knowledge discovery. Existing methods for handling attribute missing graph have limited assumptions or fail to capture complex attribute-graph dependencies. To address these challenges, we propose Attribute missing Graph Contrastive Learning (AmGCL), a framework for handling missing node attributes in attribute graph data. AmGCL leverages Dirichlet energy minimization-based feature precoding to encode in missing attributes and a self-supervised Graph Augmentation Contrastive Learning Structure (GACLS) to learn latent variables from the encoded-in data. Specifically, AmGCL utilizies feature reconstruction based on structure-attribute energy minimization while maximizes the lower bound of evidence for latent representation mutual information. Our experimental results on multiple real-world datasets demonstrate that AmGCL outperforms state-of-the-art methods in both feature imputation and node classification tasks, indicating the effectiveness of our proposed method in real-world attribute graph analysis tasks.