Abstract:Accurately estimating time of arrival (ETA) for trucks is crucial for optimizing transportation efficiency in logistics. GPS trajectory data offers valuable information for ETA, but challenges arise due to temporal sparsity, variable sequence lengths, and the interdependencies among multiple trucks. To address these issues, we propose the Temporal-Attribute-Spatial Tri-space Coordination (TAS-TsC) framework, which leverages three feature spaces-temporal, attribute, and spatial-to enhance ETA. Our framework consists of a Temporal Learning Module (TLM) using state space models to capture temporal dependencies, an Attribute Extraction Module (AEM) that transforms sequential features into structured attribute embeddings, and a Spatial Fusion Module (SFM) that models the interactions among multiple trajectories using graph representation learning.These modules collaboratively learn trajectory embeddings, which are then used by a Downstream Prediction Module (DPM) to estimate arrival times. We validate TAS-TsC on real truck trajectory datasets collected from Shenzhen, China, demonstrating its superior performance compared to existing methods.
Abstract:With one billion monthly viewers, and millions of users discussing and sharing opinions, comments below YouTube videos are rich sources of data for opinion mining and sentiment analysis. We introduce the YouTube AV 50K dataset, a freely-available collections of more than 50,000 YouTube comments and metadata below autonomous vehicle (AV)-related videos. We describe its creation process, its content and data format, and discuss its possible usages. Especially, we do a case study of the first self-driving car fatality to evaluate the dataset, and show how we can use this dataset to better understand public attitudes toward self-driving cars and public reactions to the accident. Future developments of the dataset are also discussed.