Abstract:Despite advancements in cross-domain image translation, challenges persist in asymmetric tasks such as SAR-to-Optical and Sketch-to-Instance conversions, which involve transforming data from a less detailed domain into one with richer content. Traditional CNN-based methods are effective at capturing fine details but struggle with global structure, leading to unwanted merging of image regions. To address this, we propose the CNN-Swin Hybrid Network (CSHNet), which combines two key modules: Swin Embedded CNN (SEC) and CNN Embedded Swin (CES), forming the SEC-CES-Bottleneck (SCB). SEC leverages CNN's detailed feature extraction while integrating the Swin Transformer's structural bias. CES, in turn, preserves the Swin Transformer's global integrity, compensating for CNN's lack of focus on structure. Additionally, CSHNet includes two components designed to enhance cross-domain information retention: the Interactive Guided Connection (IGC), which enables dynamic information exchange between SEC and CES, and Adaptive Edge Perception Loss (AEPL), which maintains structural boundaries during translation. Experimental results show that CSHNet outperforms existing methods in both visual quality and performance metrics across scene-level and instance-level datasets. Our code is available at: https://github.com/XduShi/CSHNet.
Abstract:Foundation models have revolutionized the paradigm of digital pathology, as they leverage general-purpose features to emulate real-world pathological practices, enabling the quantitative analysis of critical histological patterns and the dissection of cancer-specific signals. However, these static general features constrain the flexibility and pathological relevance in the ever-evolving needs of clinical applications, hindering the broad use of the current models. Here we introduce PathFiT, a dynamic feature learning method that can be effortlessly plugged into various pathology foundation models to unlock their adaptability. Meanwhile, PathFiT performs seamless implementation across diverse pathology applications regardless of downstream specificity. To validate PathFiT, we construct a digital pathology benchmark with over 20 terabytes of Internet and real-world data comprising 28 H\&E-stained tasks and 7 specialized imaging tasks including Masson's Trichrome staining and immunofluorescence images. By applying PathFiT to the representative pathology foundation models, we demonstrate state-of-the-art performance on 34 out of 35 tasks, with significant improvements on 23 tasks and outperforming by 10.20% on specialized imaging tasks. The superior performance and versatility of PathFiT open up new avenues in computational pathology.
Abstract:Comparing two (large) language models (LMs) side-by-side and pinpointing their prediction similarities and differences on the same set of inputs are crucial in many real-world scenarios, e.g., one can test if a licensed model was potentially plagiarized by another. Traditional analysis compares the LMs' outputs on some benchmark datasets, which only cover a limited number of inputs of designed perspectives for the intended applications. The benchmark datasets cannot prepare data to cover the test cases from unforeseen perspectives which can help us understand differences between models unbiasedly. In this paper, we propose a new model comparative analysis setting that considers a large input space where brute-force enumeration would be infeasible. The input space can be simply defined as all token sequences that a LM would produce low perplexity on -- we follow this definition in the paper as it would produce the most human-understandable inputs. We propose a novel framework \our that uses text generation by sampling and deweights the histogram of sampling statistics to estimate prediction differences between two LMs in this input space efficiently and unbiasedly. Our method achieves this by drawing and counting the inputs at each prediction difference value in negative log-likelihood. Experiments reveal for the first time the quantitative prediction differences between LMs in a large input space, potentially facilitating the model analysis for applications such as model plagiarism.
Abstract:Large Language Models (LLMs) have extended their capabilities beyond language generation to interact with external systems through tool calling, offering powerful potential for real-world applications. However, the phenomenon of tool hallucinations, which occur when models improperly select or misuse tools, presents critical challenges that can lead to flawed task execution and increased operational costs. This paper investigates the concept of reliable tool calling and highlights the necessity of addressing tool hallucinations. We systematically categorize tool hallucinations into two main types: tool selection hallucination and tool usage hallucination. To mitigate these issues, we propose a reliability-focused alignment framework that enhances the model's ability to accurately assess tool relevance and usage. By proposing a suite of evaluation metrics and evaluating on StableToolBench, we further demonstrate the effectiveness of our framework in mitigating tool hallucination and improving the overall system reliability of LLM tool calling.
Abstract:We introduce Generalizable 3D-Language Feature Fields (g3D-LF), a 3D representation model pre-trained on large-scale 3D-language dataset for embodied tasks. Our g3D-LF processes posed RGB-D images from agents to encode feature fields for: 1) Novel view representation predictions from any position in the 3D scene; 2) Generations of BEV maps centered on the agent; 3) Querying targets using multi-granularity language within the above-mentioned representations. Our representation can be generalized to unseen environments, enabling real-time construction and dynamic updates. By volume rendering latent features along sampled rays and integrating semantic and spatial relationships through multiscale encoders, our g3D-LF produces representations at different scales and perspectives, aligned with multi-granularity language, via multi-level contrastive learning. Furthermore, we prepare a large-scale 3D-language dataset to align the representations of the feature fields with language. Extensive experiments on Vision-and-Language Navigation under both Panorama and Monocular settings, Zero-shot Object Navigation, and Situated Question Answering tasks highlight the significant advantages and effectiveness of our g3D-LF for embodied tasks.
Abstract:As video generation models advance rapidly, assessing the quality of generated videos has become increasingly critical. Existing metrics, such as Fr\'echet Video Distance (FVD), Inception Score (IS), and ClipSim, measure quality primarily in latent space rather than from a human visual perspective, often overlooking key aspects like appearance and motion consistency to physical laws. In this paper, we propose a novel metric, VAMP (Visual Appearance and Motion Plausibility), that evaluates both the visual appearance and physical plausibility of generated videos. VAMP is composed of two main components: an appearance score, which assesses color, shape, and texture consistency across frames, and a motion score, which evaluates the realism of object movements. We validate VAMP through two experiments: corrupted video evaluation and generated video evaluation. In the corrupted video evaluation, we introduce various types of corruptions into real videos and measure the correlation between corruption severity and VAMP scores. In the generated video evaluation, we use state-of-the-art models to generate videos from carefully designed prompts and compare VAMP's performance to human evaluators' rankings. Our results demonstrate that VAMP effectively captures both visual fidelity and temporal consistency, offering a more comprehensive evaluation of video quality than traditional methods.
Abstract:Understanding robot behaviors and experiences through natural language is crucial for developing intelligent and transparent robotic systems. Recent advancement in large language models (LLMs) makes it possible to translate complex, multi-modal robotic experiences into coherent, human-readable narratives. However, grounding real-world robot experiences into natural language is challenging due to many reasons, such as multi-modal nature of data, differing sample rates, and data volume. We introduce RONAR, an LLM-based system that generates natural language narrations from robot experiences, aiding in behavior announcement, failure analysis, and human interaction to recover failure. Evaluated across various scenarios, RONAR outperforms state-of-the-art methods and improves failure recovery efficiency. Our contributions include a multi-modal framework for robot experience narration, a comprehensive real-robot dataset, and empirical evidence of RONAR's effectiveness in enhancing user experience in system transparency and failure analysis.
Abstract:Retrieval-augmented generation (RAG) has gained wide attention as the key component to improve generative models with external knowledge augmentation from information retrieval. It has shown great prominence in enhancing the functionality and performance of large language model (LLM)-based applications. However, with the comprehensive application of RAG, more and more problems and limitations have been identified, thus urgently requiring further fundamental exploration to improve current RAG frameworks. This workshop aims to explore in depth how to conduct refined and reliable RAG for downstream AI tasks. To this end, we propose to organize the first R3AG workshop at SIGIR-AP 2024 to call for participants to re-examine and formulate the basic principles and practical implementation of refined and reliable RAG. The workshop serves as a platform for both academia and industry researchers to conduct discussions, share insights, and foster research to build the next generation of RAG systems. Participants will engage in discussions and presentations focusing on fundamental challenges, cutting-edge research, and potential pathways to improve RAG. At the end of the workshop, we aim to have a clearer understanding of how to improve the reliability and applicability of RAG with more robust information retrieval and language generation.
Abstract:Road ponding, a prevalent traffic hazard, poses a serious threat to road safety by causing vehicles to lose control and leading to accidents ranging from minor fender benders to severe collisions. Existing technologies struggle to accurately identify road ponding due to complex road textures and variable ponding coloration influenced by reflection characteristics. To address this challenge, we propose a novel approach called Self-Attention-based Global Saliency-Enhanced Network (AGSENet) for proactive road ponding detection and traffic safety improvement. AGSENet incorporates saliency detection techniques through the Channel Saliency Information Focus (CSIF) and Spatial Saliency Information Enhancement (SSIE) modules. The CSIF module, integrated into the encoder, employs self-attention to highlight similar features by fusing spatial and channel information. The SSIE module, embedded in the decoder, refines edge features and reduces noise by leveraging correlations across different feature levels. To ensure accurate and reliable evaluation, we corrected significant mislabeling and missing annotations in the Puddle-1000 dataset. Additionally, we constructed the Foggy-Puddle and Night-Puddle datasets for road ponding detection in low-light and foggy conditions, respectively. Experimental results demonstrate that AGSENet outperforms existing methods, achieving IoU improvements of 2.03\%, 0.62\%, and 1.06\% on the Puddle-1000, Foggy-Puddle, and Night-Puddle datasets, respectively, setting a new state-of-the-art in this field. Finally, we verified the algorithm's reliability on edge computing devices. This work provides a valuable reference for proactive warning research in road traffic safety.
Abstract:This study presents the first implementation of multilayer neural networks on a memristor/CMOS integrated system on chip (SoC) to simultaneously detect multiple diseases. To overcome limitations in medical data, generative AI techniques are used to enhance the dataset, improving the classifier's robustness and diversity. The system achieves notable performance with low latency, high accuracy (91.82%), and energy efficiency, facilitated by end-to-end execution on a memristor-based SoC with ten 256x256 crossbar arrays and an integrated on-chip processor. This research showcases the transformative potential of memristive in-memory computing hardware in accelerating machine learning applications for medical diagnostics.