Sherman
Abstract:Connectionist Temporal Classification (CTC), a non-autoregressive training criterion, is widely used in online keyword spotting (KWS). However, existing CTC-based KWS decoding strategies either rely on Automatic Speech Recognition (ASR), which performs suboptimally due to its broad search over the acoustic space without keyword-specific optimization, or on KWS-specific decoding graphs, which are complex to implement and maintain. In this work, we propose a streaming decoding algorithm enhanced by Cross-layer Discrimination Consistency (CDC), tailored for CTC-based KWS. Specifically, we introduce a streamlined yet effective decoding algorithm capable of detecting the start of the keyword at any arbitrary position. Furthermore, we leverage discrimination consistency information across layers to better differentiate between positive and false alarm samples. Our experiments on both clean and noisy Hey Snips datasets show that the proposed streaming decoding strategy outperforms ASR-based and graph-based KWS baselines. The CDC-boosted decoding further improves performance, yielding an average absolute recall improvement of 6.8% and a 46.3% relative reduction in the miss rate compared to the graph-based KWS baseline, with a very low false alarm rate of 0.05 per hour.
Abstract:In recent years, there has been a growing interest in designing small-footprint yet effective Connectionist Temporal Classification based keyword spotting (CTC-KWS) systems. They are typically deployed on low-resource computing platforms, where limitations on model size and computational capacity create bottlenecks under complicated acoustic scenarios. Such constraints often result in overfitting and confusion between keywords and background noise, leading to high false alarms. To address these issues, we propose a noise-aware CTC-based KWS (NTC-KWS) framework designed to enhance model robustness in noisy environments, particularly under extremely low signal-to-noise ratios. Our approach introduces two additional noise-modeling wildcard arcs into the training and decoding processes based on weighted finite state transducer (WFST) graphs: self-loop arcs to address noise insertion errors and bypass arcs to handle masking and interference caused by excessive noise. Experiments on clean and noisy Hey Snips show that NTC-KWS outperforms state-of-the-art (SOTA) end-to-end systems and CTC-KWS baselines across various acoustic conditions, with particularly strong performance in low SNR scenarios.
Abstract:We present VQTalker, a Vector Quantization-based framework for multilingual talking head generation that addresses the challenges of lip synchronization and natural motion across diverse languages. Our approach is grounded in the phonetic principle that human speech comprises a finite set of distinct sound units (phonemes) and corresponding visual articulations (visemes), which often share commonalities across languages. We introduce a facial motion tokenizer based on Group Residual Finite Scalar Quantization (GRFSQ), which creates a discretized representation of facial features. This method enables comprehensive capture of facial movements while improving generalization to multiple languages, even with limited training data. Building on this quantized representation, we implement a coarse-to-fine motion generation process that progressively refines facial animations. Extensive experiments demonstrate that VQTalker achieves state-of-the-art performance in both video-driven and speech-driven scenarios, particularly in multilingual settings. Notably, our method achieves high-quality results at a resolution of 512*512 pixels while maintaining a lower bitrate of approximately 11 kbps. Our work opens new possibilities for cross-lingual talking face generation. Synthetic results can be viewed at https://x-lance.github.io/VQTalker.
Abstract:Large Language Models (LLMs) have extended their capabilities beyond language generation to interact with external systems through tool calling, offering powerful potential for real-world applications. However, the phenomenon of tool hallucinations, which occur when models improperly select or misuse tools, presents critical challenges that can lead to flawed task execution and increased operational costs. This paper investigates the concept of reliable tool calling and highlights the necessity of addressing tool hallucinations. We systematically categorize tool hallucinations into two main types: tool selection hallucination and tool usage hallucination. To mitigate these issues, we propose a reliability-focused alignment framework that enhances the model's ability to accurately assess tool relevance and usage. By proposing a suite of evaluation metrics and evaluating on StableToolBench, we further demonstrate the effectiveness of our framework in mitigating tool hallucination and improving the overall system reliability of LLM tool calling.
Abstract:The increasing context window size in Large Language Models (LLMs), such as the GPT and LLaMA series, has improved their ability to tackle complex, long-text tasks, but at the cost of inference efficiency, particularly regarding memory and computational complexity. Existing methods, including selective token retention and window-based attention, improve efficiency but risk discarding important tokens needed for future text generation. In this paper, we propose an approach that enhances LLM efficiency without token loss by reducing the memory and computational load of less important tokens, rather than discarding them.We address two challenges: 1) investigating the distribution of important tokens in the context, discovering recent tokens are more important than distant tokens in context, and 2) optimizing resources for distant tokens by sharing attention scores across layers. The experiments show that our method saves $35\%$ KV cache without compromising the performance.
Abstract:Pathological speech analysis has been of interest in the detection of certain diseases like depression and Alzheimer's disease and attracts much interest from researchers. However, previous pathological speech analysis models are commonly designed for a specific disease while overlooking the connection between diseases, which may constrain performance and lower training efficiency. Instead of fine-tuning deep models for different tasks, prompt tuning is a much more efficient training paradigm. We thus propose a unified pathological speech analysis system for as many as three diseases with the prompt tuning technique. This system uses prompt tuning to adjust only a small part of the parameters to detect different diseases from speeches of possible patients. Our system leverages a pre-trained spoken language model and demonstrates strong performance across multiple disorders while only fine-tuning a fraction of the parameters. This efficient training approach leads to faster convergence and improved F1 scores by allowing knowledge to be shared across tasks. Our experiments on Alzheimer's disease, Depression, and Parkinson's disease show competitive results, highlighting the effectiveness of our method in pathological speech analysis.
Abstract:The auto-regressive architecture, like GPTs, is widely used in modern Text-to-Speech (TTS) systems. However, it incurs substantial inference time, particularly due to the challenges in the next-token prediction posed by lengthy sequences of speech tokens. In this work, we introduce VADUSA, one of the first approaches to accelerate auto-regressive TTS through speculative decoding. Our results show that VADUSA not only significantly improves inference speed but also enhances performance by incorporating draft heads to predict future speech content auto-regressively. Furthermore, the inclusion of a tolerance mechanism during sampling accelerates inference without compromising quality. Our approach demonstrates strong generalization across large datasets and various types of speech tokens.
Abstract:Large Language Models (LLMs) exhibit strong contextual understanding and remarkable multi-task performance. Therefore, researchers have been seeking to integrate LLMs in the broad sense of Spoken Language Understanding (SLU) field. Different from the traditional method of cascading LLMs to process text generated by Automatic Speech Recognition(ASR), new efforts have focused on designing architectures centered around Audio Feature Extraction - Multimodal Information Fusion - LLM Inference(Speech LLMs). This approach enables richer audio feature extraction while simultaneously facilitating end-to-end fusion of audio and text modalities, thereby achieving deeper understanding and reasoning from audio data. This paper elucidates the development of Speech LLMs, offering an in-depth analysis of system architectures and training strategies. Through extensive research and a series of targeted experiments, the paper assesses Speech LLMs' advancements in Rich Audio Transcription and its potential for Cross-task Integration within the SLU field. Additionally, it indicates key challenges uncovered through experimentation, such as the Dormancy of LLMs under certain conditions. The paper further delves into the training strategies for Speech LLMs, proposing potential solutions based on these findings, and offering valuable insights and references for future research in this domain, as well as LLM applications in multimodal contexts.
Abstract:Although discrete speech tokens have exhibited strong potential for language model-based speech generation, their high bitrates and redundant timbre information restrict the development of such models. In this work, we propose LSCodec, a discrete speech codec that has both low bitrate and speaker decoupling ability. LSCodec adopts a three-stage unsupervised training framework with a speaker perturbation technique. A continuous information bottleneck is first established, followed by vector quantization that produces a discrete speaker-decoupled space. A discrete token vocoder finally refines acoustic details from LSCodec. By reconstruction experiments, LSCodec demonstrates superior intelligibility and audio quality with only a single codebook and smaller vocabulary size than baselines. The 25Hz version of LSCodec also achieves the lowest bitrate (0.25kbps) of codecs so far with decent quality. Voice conversion evaluations prove the satisfactory speaker disentanglement of LSCodec, and ablation study further verifies the effectiveness of the proposed training framework.
Abstract:Current mobile assistants are limited by dependence on system APIs or struggle with complex user instructions and diverse interfaces due to restricted comprehension and decision-making abilities. To address these challenges, we propose MobA, a novel Mobile phone Agent powered by multimodal large language models that enhances comprehension and planning capabilities through a sophisticated two-level agent architecture. The high-level Global Agent (GA) is responsible for understanding user commands, tracking history memories, and planning tasks. The low-level Local Agent (LA) predicts detailed actions in the form of function calls, guided by sub-tasks and memory from the GA. Integrating a Reflection Module allows for efficient task completion and enables the system to handle previously unseen complex tasks. MobA demonstrates significant improvements in task execution efficiency and completion rate in real-life evaluations, underscoring the potential of MLLM-empowered mobile assistants.