Abstract:Current mobile assistants are limited by dependence on system APIs or struggle with complex user instructions and diverse interfaces due to restricted comprehension and decision-making abilities. To address these challenges, we propose MobA, a novel Mobile phone Agent powered by multimodal large language models that enhances comprehension and planning capabilities through a sophisticated two-level agent architecture. The high-level Global Agent (GA) is responsible for understanding user commands, tracking history memories, and planning tasks. The low-level Local Agent (LA) predicts detailed actions in the form of function calls, guided by sub-tasks and memory from the GA. Integrating a Reflection Module allows for efficient task completion and enables the system to handle previously unseen complex tasks. MobA demonstrates significant improvements in task execution efficiency and completion rate in real-life evaluations, underscoring the potential of MLLM-empowered mobile assistants.
Abstract:Large Language Models (LLMs) often generate erroneous outputs, known as hallucinations, due to their limitations in discerning questions beyond their knowledge scope. While addressing hallucination has been a focal point in research, previous efforts primarily concentrate on enhancing correctness without giving due consideration to the significance of rejection mechanisms. In this paper, we conduct a comprehensive examination of the role of rejection, introducing the notion of model reliability along with corresponding metrics. These metrics measure the model's ability to provide accurate responses while adeptly rejecting questions exceeding its knowledge boundaries, thereby minimizing hallucinations. To improve the inherent reliability of LLMs, we present a novel alignment framework called Reinforcement Learning from Knowledge Feedback (RLKF). RLKF leverages knowledge feedback to dynamically determine the model's knowledge boundary and trains a reliable reward model to encourage the refusal of out-of-knowledge questions. Experimental results on mathematical questions affirm the substantial efficacy of RLKF in significantly enhancing LLM reliability.
Abstract:The growing prevalence of visually rich documents, such as webpages and scanned/digital-born documents (images, PDFs, etc.), has led to increased interest in automatic document understanding and information extraction across academia and industry. Although various document modalities, including image, text, layout, and structure, facilitate human information retrieval, the interconnected nature of these modalities presents challenges for neural networks. In this paper, we introduce WebLM, a multimodal pre-training network designed to address the limitations of solely modeling text and structure modalities of HTML in webpages. Instead of processing document images as unified natural images, WebLM integrates the hierarchical structure of document images to enhance the understanding of markup-language-based documents. Additionally, we propose several pre-training tasks to model the interaction among text, structure, and image modalities effectively. Empirical results demonstrate that the pre-trained WebLM significantly surpasses previous state-of-the-art pre-trained models across several webpage understanding tasks. The pre-trained models and code are available at https://github.com/X-LANCE/weblm.
Abstract:Rapid progress in multimodal large language models (MLLMs) highlights the need to introduce challenging yet realistic benchmarks to the academic community. Existing benchmarks primarily focus on simple natural image understanding, but Multi emerges as a cutting-edge benchmark for MLLMs, offering a comprehensive dataset for evaluating MLLMs against understanding complex figures and tables, and scientific questions. This benchmark, reflecting current realistic examination styles, provides multimodal inputs and requires responses that are either precise or open-ended, similar to real-life school tests. It challenges MLLMs with a variety of tasks, ranging from formula derivation to image detail analysis, and cross-modality reasoning. Multi includes over 18,000 questions, with a focus on science-based QA in diverse formats. We also introduce Multi-Elite, a 500-question subset for testing the extremities of MLLMs, and Multi-Extend, which enhances In-Context Learning research with more than 4,500 knowledge pieces. Our evaluation indicates significant potential for MLLM advancement, with GPT-4V achieving a 63.7% accuracy rate on Multi, in contrast to other MLLMs scoring between 31.3% and 53.7%. Multi serves not only as a robust evaluation platform but also paves the way for the development of expert-level AI.
Abstract:Large language models (LLMs) have established great success in the general domain of natural language processing. Their emerging task generalization and free-form dialogue capabilities can greatly help to design Chemical General Intelligence (CGI) to assist real-world research in chemistry. However, the existence of specialized language and knowledge in the field of chemistry, such as the highly informative SMILES notation, hinders the performance of general-domain LLMs in chemistry. To this end, we develop ChemDFM, the first LLM towards CGI. ChemDFM-13B is trained on 34B tokens from chemical literature, textbooks, and instructions as well as various data from the general domain. Therefore, it can store, understand, and reason over chemical knowledge and languages while still possessing advanced free-form language comprehension capabilities. Extensive quantitative evaluation shows that ChemDFM can significantly outperform the representative open-sourced LLMs. Moreover, ChemDFM can also surpass GPT-4 on a great portion of chemical tasks, despite the significant size difference. Further qualitative evaluations demonstrate the efficiency and effectiveness of ChemDFM in real-world research scenarios. We will open-source the ChemDFM model soon.
Abstract:Task-oriented dialogue (TOD) systems have been widely used by mobile phone intelligent assistants to accomplish tasks such as calendar scheduling or hotel booking. Current TOD systems usually focus on multi-turn text/speech interaction and reply on calling back-end APIs to search database information or execute the task on mobile phone. However, this architecture greatly limits the information searching capability of intelligent assistants and may even lead to task failure if APIs are not available or the task is too complicated to be executed by the provided APIs. In this paper, we propose a new TOD architecture: GUI-based task-oriented dialogue system (GUI-TOD). A GUI-TOD system can directly perform GUI operations on real APPs and execute tasks without invoking backend APIs. Furthermore, we release META-GUI, a dataset for training a Multi-modal conversational agent on mobile GUI. We also propose a multi-model action prediction and response model. It showed promising results on META-GUI, but there is still room for further improvement. The dataset and models will be publicly available.
Abstract:Existing Human-Object Interaction (HOI) Detection approaches have achieved great progress on nonrare classes while rare HOI classes are still not well-detected. In this paper, we intend to apply human prior knowledge into the existing work. So we add human-labeled rules to PaStaNet and propose Rb-PaStaNet aimed at improving rare HOI classes detection. Our results show a certain improvement of the rare classes, while the non-rare classes and the overall improvement is more considerable.
Abstract:We introduce the concept of design continuums for the data layout of key-value stores. A design continuum unifies major distinct data structure designs under the same model. The critical insight and potential long-term impact is that such unifying models 1) render what we consider up to now as fundamentally different data structures to be seen as views of the very same overall design space, and 2) allow seeing new data structure designs with performance properties that are not feasible by existing designs. The core intuition behind the construction of design continuums is that all data structures arise from the very same set of fundamental design principles, i.e., a small set of data layout design concepts out of which we can synthesize any design that exists in the literature as well as new ones. We show how to construct, evaluate, and expand, design continuums and we also present the first continuum that unifies major data structure designs, i.e., B+tree, B-epsilon-tree, LSM-tree, and LSH-table. The practical benefit of a design continuum is that it creates a fast inference engine for the design of data structures. For example, we can predict near instantly how a specific design change in the underlying storage of a data system would affect performance, or reversely what would be the optimal data structure (from a given set of designs) given workload characteristics and a memory budget. In turn, these properties allow us to envision a new class of self-designing key-value stores with a substantially improved ability to adapt to workload and hardware changes by transitioning between drastically different data structure designs to assume a diverse set of performance properties at will.