Abstract:Rule-based adaptation is a foundational approach to self-adaptation, characterized by its human readability and rapid response. However, building high-performance and robust adaptation rules is often a challenge because it essentially involves searching the optimal design in a complex (variables) space. In response, this paper attempt to employ large language models (LLMs) as a optimizer to construct and optimize adaptation rules, leveraging the common sense and reasoning capabilities inherent in LLMs. Preliminary experiments conducted in SWIM have validated the effectiveness and limitation of our method.
Abstract:Social media platforms such as Twitter, Reddit, and Sina Weibo play a crucial role in global communication but often encounter strict regulations in geopolitically sensitive regions. This situation has prompted users to ingeniously modify their way of communicating, frequently resorting to coded language in these regulated social media environments. This shift in communication is not merely a strategy to counteract regulation, but a vivid manifestation of language evolution, demonstrating how language naturally evolves under societal and technological pressures. Studying the evolution of language in regulated social media contexts is of significant importance for ensuring freedom of speech, optimizing content moderation, and advancing linguistic research. This paper proposes a multi-agent simulation framework using Large Language Models (LLMs) to explore the evolution of user language in regulated social media environments. The framework employs LLM-driven agents: supervisory agent who enforce dialogue supervision and participant agents who evolve their language strategies while engaging in conversation, simulating the evolution of communication styles under strict regulations aimed at evading social media regulation. The study evaluates the framework's effectiveness through a range of scenarios from abstract scenarios to real-world situations. Key findings indicate that LLMs are capable of simulating nuanced language dynamics and interactions in constrained settings, showing improvement in both evading supervision and information accuracy as evolution progresses. Furthermore, it was found that LLM agents adopt different strategies for different scenarios.
Abstract:Evolutionary computation (EC), as a powerful optimization algorithm, has been applied across various domains. However, as the complexity of problems increases, the limitations of EC have become more apparent. The advent of large language models (LLMs) has not only transformed natural language processing but also extended their capabilities to diverse fields. By harnessing LLMs' vast knowledge and adaptive capabilities, we provide a forward-looking overview of potential improvements LLMs can bring to EC, focusing on the algorithms themselves, population design, and additional enhancements. This presents a promising direction for future research at the intersection of LLMs and EC.
Abstract:Graph anomaly detection (GAD) aims to identify anomalous graphs that significantly deviate from other ones, which has raised growing attention due to the broad existence and complexity of graph-structured data in many real-world scenarios. However, existing GAD methods usually execute with centralized training, which may lead to privacy leakage risk in some sensitive cases, thereby impeding collaboration among organizations seeking to collectively develop robust GAD models. Although federated learning offers a promising solution, the prevalent non-IID problems and high communication costs present significant challenges, particularly pronounced in collaborations with graph data distributed among different participants. To tackle these challenges, we propose an effective federated graph anomaly detection framework (FGAD). We first introduce an anomaly generator to perturb the normal graphs to be anomalous, and train a powerful anomaly detector by distinguishing generated anomalous graphs from normal ones. Then, we leverage a student model to distill knowledge from the trained anomaly detector (teacher model), which aims to maintain the personality of local models and alleviate the adverse impact of non-IID problems. Moreover, we design an effective collaborative learning mechanism that facilitates the personalization preservation of local models and significantly reduces communication costs among clients. Empirical results of the GAD tasks on non-IID graphs compared with state-of-the-art baselines demonstrate the superiority and efficiency of the proposed FGAD method.
Abstract:Rapid progress in multimodal large language models (MLLMs) highlights the need to introduce challenging yet realistic benchmarks to the academic community. Existing benchmarks primarily focus on simple natural image understanding, but Multi emerges as a cutting-edge benchmark for MLLMs, offering a comprehensive dataset for evaluating MLLMs against understanding complex figures and tables, and scientific questions. This benchmark, reflecting current realistic examination styles, provides multimodal inputs and requires responses that are either precise or open-ended, similar to real-life school tests. It challenges MLLMs with a variety of tasks, ranging from formula derivation to image detail analysis, and cross-modality reasoning. Multi includes over 18,000 questions, with a focus on science-based QA in diverse formats. We also introduce Multi-Elite, a 500-question subset for testing the extremities of MLLMs, and Multi-Extend, which enhances In-Context Learning research with more than 4,500 knowledge pieces. Our evaluation indicates significant potential for MLLM advancement, with GPT-4V achieving a 63.7% accuracy rate on Multi, in contrast to other MLLMs scoring between 31.3% and 53.7%. Multi serves not only as a robust evaluation platform but also paves the way for the development of expert-level AI.
Abstract:This paper studies the problem of detecting anomalous graphs using a machine learning model trained on only normal graphs, which has many applications in molecule, biology, and social network data analysis. We present a self-discriminative modeling framework for anomalous graph detection. The key idea, mathematically and numerically illustrated, is to learn a discriminator (classifier) from the given normal graphs together with pseudo-anomalous graphs generated by a model jointly trained, where we never use any true anomalous graphs and we hope that the generated pseudo-anomalous graphs interpolate between normal ones and (real) anomalous ones. Under the framework, we provide three algorithms with different computational efficiencies and stabilities for anomalous graph detection. The three algorithms are compared with several state-of-the-art graph-level anomaly detection baselines on nine popular graph datasets (four with small size and five with moderate size) and show significant improvement in terms of AUC. The success of our algorithms stems from the integration of the discriminative classifier and the well-posed pseudo-anomalous graphs, which provide new insights for anomaly detection. Moreover, we investigate our algorithms for large-scale imbalanced graph datasets. Surprisingly, our algorithms, though fully unsupervised, are able to significantly outperform supervised learning algorithms of anomalous graph detection. The corresponding reason is also analyzed.
Abstract:In this paper, we address the challenges faced by Value Iteration Networks (VIN) in handling larger input maps and mitigating the impact of accumulated errors caused by increased iterations. We propose a novel approach, Value Iteration Networks with Gated Summarization Module (GS-VIN), which incorporates two main improvements: (1) employing an Adaptive Iteration Strategy in the Value Iteration module to reduce the number of iterations, and (2) introducing a Gated Summarization module to summarize the iterative process. The adaptive iteration strategy uses larger convolution kernels with fewer iteration times, reducing network depth and increasing training stability while maintaining the accuracy of the planning process. The gated summarization module enables the network to emphasize the entire planning process, rather than solely relying on the final global planning outcome, by temporally and spatially resampling the entire planning process within the VI module. We conduct experiments on 2D grid world path-finding problems and the Atari Mr. Pac-man environment, demonstrating that GS-VIN outperforms the baseline in terms of single-step accuracy, planning success rate, and overall performance across different map sizes. Additionally, we provide an analysis of the relationship between input size, kernel size, and the number of iterations in VI-based models, which is applicable to a majority of VI-based models and offers valuable insights for researchers and industrial deployment.
Abstract:Graph-level anomaly detection aims to identify anomalous graphs from a collection of graphs in an unsupervised manner. A common assumption of anomaly detection is that a reasonable decision boundary has a hypersphere shape, but may appear some non-conforming phenomena in high dimensions. Towards this end, we firstly propose a novel deep graph-level anomaly detection model, which learns the graph representation with maximum mutual information between substructure and global structure features while exploring a hypersphere anomaly decision boundary. The idea is to ensure the training data distribution consistent with the decision hypersphere via an orthogonal projection layer. Moreover, we further perform the bi-hypersphere compression to emphasize the discrimination of anomalous graphs from normal graphs. Note that our method is not confined to graph data and is applicable to anomaly detection of other data such as images. The numerical and visualization results on benchmark datasets demonstrate the effectiveness and superiority of our methods in comparison to many baselines and state-of-the-arts.
Abstract:In this work, we study the problem of partitioning a set of graphs into different groups such that the graphs in the same group are similar while the graphs in different groups are dissimilar. This problem was rarely studied previously, although there have been a lot of work on node clustering and graph classification. The problem is challenging because it is difficult to measure the similarity or distance between graphs. One feasible approach is using graph kernels to compute a similarity matrix for the graphs and then performing spectral clustering, but the effectiveness of existing graph kernels in measuring the similarity between graphs is very limited. To solve the problem, we propose a novel method called Deep Graph-Level Clustering (DGLC). DGLC utilizes a graph isomorphism network to learn graph-level representations by maximizing the mutual information between the representations of entire graphs and substructures, under the regularization of a clustering module that ensures discriminative representations via pseudo labels. DGLC achieves graph-level representation learning and graph-level clustering in an end-to-end manner. The experimental results on six benchmark datasets of graphs show that our DGLC has state-of-the-art performance in comparison to many baselines.
Abstract:This work presents an unsupervised deep discriminant analysis for clustering. The method is based on deep neural networks and aims to minimize the intra-cluster discrepancy and maximize the inter-cluster discrepancy in an unsupervised manner. The method is able to project the data into a nonlinear low-dimensional latent space with compact and distinct distribution patterns such that the data clusters can be effectively identified. We further provide an extension of the method such that available graph information can be effectively exploited to improve the clustering performance. Extensive numerical results on image and non-image data with or without graph information demonstrate the effectiveness of the proposed methods.