Abstract:Graph anomaly detection (GAD) aims to identify anomalous graphs that significantly deviate from other ones, which has raised growing attention due to the broad existence and complexity of graph-structured data in many real-world scenarios. However, existing GAD methods usually execute with centralized training, which may lead to privacy leakage risk in some sensitive cases, thereby impeding collaboration among organizations seeking to collectively develop robust GAD models. Although federated learning offers a promising solution, the prevalent non-IID problems and high communication costs present significant challenges, particularly pronounced in collaborations with graph data distributed among different participants. To tackle these challenges, we propose an effective federated graph anomaly detection framework (FGAD). We first introduce an anomaly generator to perturb the normal graphs to be anomalous, and train a powerful anomaly detector by distinguishing generated anomalous graphs from normal ones. Then, we leverage a student model to distill knowledge from the trained anomaly detector (teacher model), which aims to maintain the personality of local models and alleviate the adverse impact of non-IID problems. Moreover, we design an effective collaborative learning mechanism that facilitates the personalization preservation of local models and significantly reduces communication costs among clients. Empirical results of the GAD tasks on non-IID graphs compared with state-of-the-art baselines demonstrate the superiority and efficiency of the proposed FGAD method.
Abstract:Tensor-oriented multi-view subspace clustering has achieved significant strides in assessing high-order correlations and improving clustering analysis of multi-view data. Nevertheless, most of existing investigations are typically hampered by the two flaws. First, self-representation based tensor subspace learning usually induces high time and space complexity, and is limited in perceiving nonlinear local structure in the embedding space. Second, the tensor singular value decomposition (t-SVD) model redistributes each singular value equally without considering the diverse importance among them. To well cope with the issues, we propose a hyper-Laplacian regularized concept factorization (HLRCF) in low-rank tensor space for multi-view clustering. Specifically, we adopt the concept factorization to explore the latent cluster-wise representation of each view. Further, the hypergraph Laplacian regularization endows the model with the capability of extracting the nonlinear local structures in the latent space. Considering that different tensor singular values associate structural information with unequal importance, we develop a self-weighted tensor Schatten p-norm to constrain the tensor comprised of all cluster-wise representations. Notably, the tensor with smaller size greatly decreases the time and space complexity in the low-rank optimization. Finally, experimental results on eight benchmark datasets exhibit that HLRCF outperforms other multi-view methods, showingcasing its superior performance.