Abstract:Humanoid robots require both robust lower-body locomotion and precise upper-body manipulation. While recent Reinforcement Learning (RL) approaches provide whole-body loco-manipulation policies, they lack precise manipulation with high DoF arms. In this paper, we propose decoupling upper-body control from locomotion, using inverse kinematics (IK) and motion retargeting for precise manipulation, while RL focuses on robust lower-body locomotion. We introduce PMP (Predictive Motion Priors), trained with Conditional Variational Autoencoder (CVAE) to effectively represent upper-body motions. The locomotion policy is trained conditioned on this upper-body motion representation, ensuring that the system remains robust with both manipulation and locomotion. We show that CVAE features are crucial for stability and robustness, and significantly outperforms RL-based whole-body control in precise manipulation. With precise upper-body motion and robust lower-body locomotion control, operators can remotely control the humanoid to walk around and explore different environments, while performing diverse manipulation tasks.
Abstract:As machine learning models scale in size and complexity, their computational requirements become a significant barrier. Mixture-of-Experts (MoE) models alleviate this issue by selectively activating relevant experts. Despite this, MoE models are hindered by high communication overhead from all-to-all operations, low GPU utilization due to the synchronous communication constraint, and complications from heterogeneous GPU environments. This paper presents Aurora, which optimizes both model deployment and all-to-all communication scheduling to address these challenges in MoE inference. Aurora achieves minimal communication times by strategically ordering token transmissions in all-to-all communications. It improves GPU utilization by colocating experts from different models on the same device, avoiding the limitations of synchronous all-to-all communication. We analyze Aurora's optimization strategies theoretically across four common GPU cluster settings: exclusive vs. colocated models on GPUs, and homogeneous vs. heterogeneous GPUs. Aurora provides optimal solutions for three cases, and for the remaining NP-hard scenario, it offers a polynomial-time sub-optimal solution with only a 1.07x degradation from the optimal. Aurora is the first approach to minimize MoE inference time via optimal model deployment and communication scheduling across various scenarios. Evaluations demonstrate that Aurora significantly accelerates inference, achieving speedups of up to 2.38x in homogeneous clusters and 3.54x in heterogeneous environments. Moreover, Aurora enhances GPU utilization by up to 1.5x compared to existing methods.
Abstract:Diffusion tensor imaging (DTI) holds significant importance in clinical diagnosis and neuroscience research. However, conventional model-based fitting methods often suffer from sensitivity to noise, leading to decreased accuracy in estimating DTI parameters. While traditional data-driven deep learning methods have shown potential in terms of accuracy and efficiency, their limited generalization to out-of-training-distribution data impedes their broader application due to the diverse scan protocols used across centers, scanners, and studies. This work aims to tackle these challenges and promote the use of DTI by introducing a data-driven optimization-based method termed DoDTI. DoDTI combines the weighted linear least squares fitting algorithm and regularization by denoising technique. The former fits DW images from diverse acquisition settings into diffusion tensor field, while the latter applies a deep learning-based denoiser to regularize the diffusion tensor field instead of the DW images, which is free from the limitation of fixed-channel assignment of the network. The optimization object is solved using the alternating direction method of multipliers and then unrolled to construct a deep neural network, leveraging a data-driven strategy to learn network parameters. Extensive validation experiments are conducted utilizing both internally simulated datasets and externally obtained in-vivo datasets. The results, encompassing both qualitative and quantitative analyses, showcase that the proposed method attains state-of-the-art performance in DTI parameter estimation. Notably, it demonstrates superior generalization, accuracy, and efficiency, rendering it highly reliable for widespread application in the field.
Abstract:Learning from demonstrations has shown to be an effective approach to robotic manipulation, especially with the recently collected large-scale robot data with teleoperation systems. Building an efficient teleoperation system across diverse robot platforms has become more crucial than ever. However, there is a notable lack of cost-effective and user-friendly teleoperation systems for different end-effectors, e.g., anthropomorphic robot hands and grippers, that can operate across multiple platforms. To address this issue, we develop ACE, a cross-platform visual-exoskeleton system for low-cost dexterous teleoperation. Our system utilizes a hand-facing camera to capture 3D hand poses and an exoskeleton mounted on a portable base, enabling accurate real-time capture of both finger and wrist poses. Compared to previous systems, which often require hardware customization according to different robots, our single system can generalize to humanoid hands, arm-hands, arm-gripper, and quadruped-gripper systems with high-precision teleoperation. This enables imitation learning for complex manipulation tasks on diverse platforms.
Abstract:Diffusion models, which leverage stochastic processes to capture complex data distributions effectively, have shown their performance as generative models, achieving notable success in image-related tasks through iterative denoising processes. Recently, diffusion models have been further applied and show their strong abilities in planning tasks, leading to a significant growth in related publications since 2023. To help researchers better understand the field and promote the development of the field, we conduct a systematic literature review of recent advancements in the application of diffusion models for planning. Specifically, this paper categorizes and discusses the current literature from the following perspectives: (i) relevant datasets and benchmarks used for evaluating diffusion modelbased planning; (ii) fundamental studies that address aspects such as sampling efficiency; (iii) skill-centric and condition-guided planning for enhancing adaptability; (iv) safety and uncertainty managing mechanism for enhancing safety and robustness; and (v) domain-specific application such as autonomous driving. Finally, given the above literature review, we further discuss the challenges and future directions in this field.
Abstract:People with color vision deficiency often face challenges in distinguishing colors such as red and green, which can complicate daily tasks and require the use of assistive tools or environmental adjustments. Current support tools mainly focus on presentation-based aids, like the color vision modes found in iPhone accessibility settings. However, offering context-aware support, like indicating the doneness of meat, remains a challenge since task-specific solutions are not cost-effective for all possible scenarios. To address this, our paper proposes an application that provides contextual and autonomous assistance. This application is mainly composed of: (i) an augmented reality interface that efficiently captures context; and (ii) a multi-modal large language model-based reasoner that serves to cognitize the context and then reason about the appropriate support contents. Preliminary user experiments with two color vision deficient users across five different scenarios have demonstrated the effectiveness and universality of our application.
Abstract:Rule-based adaptation is a foundational approach to self-adaptation, characterized by its human readability and rapid response. However, building high-performance and robust adaptation rules is often a challenge because it essentially involves searching the optimal design in a complex (variables) space. In response, this paper attempt to employ large language models (LLMs) as a optimizer to construct and optimize adaptation rules, leveraging the common sense and reasoning capabilities inherent in LLMs. Preliminary experiments conducted in SWIM have validated the effectiveness and limitation of our method.
Abstract:Teleoperation serves as a powerful method for collecting on-robot data essential for robot learning from demonstrations. The intuitiveness and ease of use of the teleoperation system are crucial for ensuring high-quality, diverse, and scalable data. To achieve this, we propose an immersive teleoperation system Open-TeleVision that allows operators to actively perceive the robot's surroundings in a stereoscopic manner. Additionally, the system mirrors the operator's arm and hand movements on the robot, creating an immersive experience as if the operator's mind is transmitted to a robot embodiment. We validate the effectiveness of our system by collecting data and training imitation learning policies on four long-horizon, precise tasks (Can Sorting, Can Insertion, Folding, and Unloading) for 2 different humanoid robots and deploy them in the real world. The system is open-sourced at: https://robot-tv.github.io/
Abstract:It's assumed that training data is sufficient in base session of few-shot class-incremental audio classification. However, it's difficult to collect abundant samples for model training in base session in some practical scenarios due to the data scarcity of some classes. This paper explores a new problem of fully few-shot class-incremental audio classification with few training samples in all sessions. Moreover, we propose a method using expandable dual-embedding extractor to solve it. The proposed model consists of an embedding extractor and an expandable classifier. The embedding extractor consists of a pretrained Audio Spectrogram Transformer (AST) and a finetuned AST. The expandable classifier consists of prototypes and each prototype represents a class. Experiments are conducted on three datasets (LS-100, NSynth-100 and FSC-89). Results show that our method exceeds seven baseline ones in average accuracy with statistical significance. Code is at: https://github.com/YongjieSi/EDE.
Abstract:We introduce a low-resource safety enhancement method for aligning large language models (LLMs) without the need for supervised fine-tuning (SFT) or reinforcement learning from human feedback (RLHF). Our main idea is to exploit knowledge distillation to extract the alignment information from existing well-aligned LLMs and integrate it into unaligned LLMs in a plug-and-play fashion. Methodology, we employ delta debugging to identify the critical components of knowledge necessary for effective distillation. On the harmful question dataset, our method significantly enhances the average defense success rate by approximately 14.41%, reaching as high as 51.39%, in 17 unaligned pre-trained LLMs, without compromising performance.