Abstract:Diffusion models, which leverage stochastic processes to capture complex data distributions effectively, have shown their performance as generative models, achieving notable success in image-related tasks through iterative denoising processes. Recently, diffusion models have been further applied and show their strong abilities in planning tasks, leading to a significant growth in related publications since 2023. To help researchers better understand the field and promote the development of the field, we conduct a systematic literature review of recent advancements in the application of diffusion models for planning. Specifically, this paper categorizes and discusses the current literature from the following perspectives: (i) relevant datasets and benchmarks used for evaluating diffusion modelbased planning; (ii) fundamental studies that address aspects such as sampling efficiency; (iii) skill-centric and condition-guided planning for enhancing adaptability; (iv) safety and uncertainty managing mechanism for enhancing safety and robustness; and (v) domain-specific application such as autonomous driving. Finally, given the above literature review, we further discuss the challenges and future directions in this field.
Abstract:People with color vision deficiency often face challenges in distinguishing colors such as red and green, which can complicate daily tasks and require the use of assistive tools or environmental adjustments. Current support tools mainly focus on presentation-based aids, like the color vision modes found in iPhone accessibility settings. However, offering context-aware support, like indicating the doneness of meat, remains a challenge since task-specific solutions are not cost-effective for all possible scenarios. To address this, our paper proposes an application that provides contextual and autonomous assistance. This application is mainly composed of: (i) an augmented reality interface that efficiently captures context; and (ii) a multi-modal large language model-based reasoner that serves to cognitize the context and then reason about the appropriate support contents. Preliminary user experiments with two color vision deficient users across five different scenarios have demonstrated the effectiveness and universality of our application.
Abstract:Rule-based adaptation is a foundational approach to self-adaptation, characterized by its human readability and rapid response. However, building high-performance and robust adaptation rules is often a challenge because it essentially involves searching the optimal design in a complex (variables) space. In response, this paper attempt to employ large language models (LLMs) as a optimizer to construct and optimize adaptation rules, leveraging the common sense and reasoning capabilities inherent in LLMs. Preliminary experiments conducted in SWIM have validated the effectiveness and limitation of our method.
Abstract:Social media platforms such as Twitter, Reddit, and Sina Weibo play a crucial role in global communication but often encounter strict regulations in geopolitically sensitive regions. This situation has prompted users to ingeniously modify their way of communicating, frequently resorting to coded language in these regulated social media environments. This shift in communication is not merely a strategy to counteract regulation, but a vivid manifestation of language evolution, demonstrating how language naturally evolves under societal and technological pressures. Studying the evolution of language in regulated social media contexts is of significant importance for ensuring freedom of speech, optimizing content moderation, and advancing linguistic research. This paper proposes a multi-agent simulation framework using Large Language Models (LLMs) to explore the evolution of user language in regulated social media environments. The framework employs LLM-driven agents: supervisory agent who enforce dialogue supervision and participant agents who evolve their language strategies while engaging in conversation, simulating the evolution of communication styles under strict regulations aimed at evading social media regulation. The study evaluates the framework's effectiveness through a range of scenarios from abstract scenarios to real-world situations. Key findings indicate that LLMs are capable of simulating nuanced language dynamics and interactions in constrained settings, showing improvement in both evading supervision and information accuracy as evolution progresses. Furthermore, it was found that LLM agents adopt different strategies for different scenarios.
Abstract:Evolutionary computation (EC), as a powerful optimization algorithm, has been applied across various domains. However, as the complexity of problems increases, the limitations of EC have become more apparent. The advent of large language models (LLMs) has not only transformed natural language processing but also extended their capabilities to diverse fields. By harnessing LLMs' vast knowledge and adaptive capabilities, we provide a forward-looking overview of potential improvements LLMs can bring to EC, focusing on the algorithms themselves, population design, and additional enhancements. This presents a promising direction for future research at the intersection of LLMs and EC.
Abstract:Recent advancements in large language models (LLMs) have highlighted the potential for vulnerability detection, a crucial component of software quality assurance. Despite this progress, most studies have been limited to the perspective of a single role, usually testers, lacking diverse viewpoints from different roles in a typical software development life-cycle, including both developers and testers. To this end, this paper introduces an approach to employ LLMs to act as different roles to simulate real-life code review process, engaging in discussions towards a consensus on the existence and classification of vulnerabilities in the code. Preliminary evaluation of the proposed approach indicates a 4.73% increase in the precision rate, 58.9% increase in the recall rate, and a 28.1% increase in the F1 score.
Abstract:In this paper, we address the challenges faced by Value Iteration Networks (VIN) in handling larger input maps and mitigating the impact of accumulated errors caused by increased iterations. We propose a novel approach, Value Iteration Networks with Gated Summarization Module (GS-VIN), which incorporates two main improvements: (1) employing an Adaptive Iteration Strategy in the Value Iteration module to reduce the number of iterations, and (2) introducing a Gated Summarization module to summarize the iterative process. The adaptive iteration strategy uses larger convolution kernels with fewer iteration times, reducing network depth and increasing training stability while maintaining the accuracy of the planning process. The gated summarization module enables the network to emphasize the entire planning process, rather than solely relying on the final global planning outcome, by temporally and spatially resampling the entire planning process within the VI module. We conduct experiments on 2D grid world path-finding problems and the Atari Mr. Pac-man environment, demonstrating that GS-VIN outperforms the baseline in terms of single-step accuracy, planning success rate, and overall performance across different map sizes. Additionally, we provide an analysis of the relationship between input size, kernel size, and the number of iterations in VI-based models, which is applicable to a majority of VI-based models and offers valuable insights for researchers and industrial deployment.
Abstract:Users interacting with a system through UI are typically obliged to perform their actions in a pre-determined order, to successfully achieve certain functional goals. However, such obligations are often not followed strictly by users, which may lead to the violation to security properties, especially in security-critical systems. To improve the security with the awareness of unexpected user behaviors, a system can be redesigned to a more robust one by changing the order of actions in its specification. Meanwhile, we anticipate that the functionalities would remain consistent following the modifications. In this paper, we propose an efficient algorithm to automatically produce specification revisions tackling the attack scenarios caused by weakened user obligations. By our algorithm, all the revisions would be generated to maintain the integrity of the functionalities using a novel recomposition approach. Then, the eligible revisions that can satisfy the security requirements would be efficiently spotted by a hybrid approach combining model checking and machine learning techniques. We evaluate our algorithm by comparing its performance with a state-of-the-art approach regarding their coverage and searching speed of the desirable revisions.
Abstract:A self-learning adaptive system (SLAS) uses machine learning to enable and enhance its adaptability. Such systems are expected to perform well in dynamic situations. For learning high-performance adaptation policy, some assumptions must be made on the environment-system dynamics when information about the real situation is incomplete. However, these assumptions cannot be expected to be always correct, and yet it is difficult to enumerate all possible assumptions. This leads to the problem of incomplete-information learning. We consider this problem as multiple model problem in terms of finding the adaptation policy that can cope with multiple models of environment-system dynamics. This paper proposes a novel approach to engineering the online adaptation of SLAS. It separates three concerns that are related to the adaptation policy and presents the modeling and synthesis process, with the goal of achieving higher model construction efficiency. In addition, it designs a meta-reinforcement learning algorithm for learning the meta policy over the multiple models, so that the meta policy can quickly adapt to the real environment-system dynamics. At last, it reports the case study on a robotic system to evaluate the adaptability of the approach.
Abstract:Two established approaches to engineer adaptive systems are architecture-based adaptation that uses a Monitor-Analysis-Planning-Executing (MAPE) loop that reasons over architectural models (aka Knowledge) to make adaptation decisions, and control-based adaptation that relies on principles of control theory (CT) to realize adaptation. Recently, we also observe a rapidly growing interest in applying machine learning (ML) to support different adaptation mechanisms. While MAPE and CT have particular characteristics and strengths to be applied independently, in this paper, we are concerned with the question of how these approaches are related with one another and whether combining them and supporting them with ML can produce better adaptive systems. We motivate the combined use of different adaptation approaches using a scenario of a cloud-based enterprise system and illustrate the analysis when combining the different approaches. To conclude, we offer a set of open questions for further research in this interesting area.