Abstract:Unsupervised Domain Adaptation (UDA) leverages a labeled source domain to solve tasks in an unlabeled target domain. While Transformer-based methods have shown promise in UDA, their application is limited to plain Transformers, excluding Convolutional Neural Networks (CNNs) and hierarchical Transformers. To address this issues, we propose Bidirectional Probability Calibration (BiPC) from a probability space perspective. We demonstrate that the probability outputs from a pre-trained head, after extensive pre-training, are robust against domain gaps and can adjust the probability distribution of the task head. Moreover, the task head can enhance the pre-trained head during adaptation training, improving model performance through bidirectional complementation. Technically, we introduce Calibrated Probability Alignment (CPA) to adjust the pre-trained head's probabilities, such as those from an ImageNet-1k pre-trained classifier. Additionally, we design a Calibrated Gini Impurity (CGI) loss to refine the task head, with calibrated coefficients learned from the pre-trained classifier. BiPC is a simple yet effective method applicable to various networks, including CNNs and Transformers. Experimental results demonstrate its remarkable performance across multiple UDA tasks. Our code will be available at: https://github.com/Wenlve-Zhou/BiPC.
Abstract:Social media platforms such as Twitter, Reddit, and Sina Weibo play a crucial role in global communication but often encounter strict regulations in geopolitically sensitive regions. This situation has prompted users to ingeniously modify their way of communicating, frequently resorting to coded language in these regulated social media environments. This shift in communication is not merely a strategy to counteract regulation, but a vivid manifestation of language evolution, demonstrating how language naturally evolves under societal and technological pressures. Studying the evolution of language in regulated social media contexts is of significant importance for ensuring freedom of speech, optimizing content moderation, and advancing linguistic research. This paper proposes a multi-agent simulation framework using Large Language Models (LLMs) to explore the evolution of user language in regulated social media environments. The framework employs LLM-driven agents: supervisory agent who enforce dialogue supervision and participant agents who evolve their language strategies while engaging in conversation, simulating the evolution of communication styles under strict regulations aimed at evading social media regulation. The study evaluates the framework's effectiveness through a range of scenarios from abstract scenarios to real-world situations. Key findings indicate that LLMs are capable of simulating nuanced language dynamics and interactions in constrained settings, showing improvement in both evading supervision and information accuracy as evolution progresses. Furthermore, it was found that LLM agents adopt different strategies for different scenarios.
Abstract:Graph learning has a wide range of applications in many scenarios, which require more need for data privacy. Federated learning is an emerging distributed machine learning approach that leverages data from individual devices or data centers to improve the accuracy and generalization of the model, while also protecting the privacy of user data. Graph-federated learning is mainly based on the classical federated learning framework i.e., the Client-Server framework. However, the Client-Server framework faces problems such as a single point of failure of the central server and poor scalability of network topology. First, we introduce the decentralized framework to graph-federated learning. Second, determine the confidence among nodes based on the similarity of data among nodes, subsequently, the gradient information is then aggregated by linear weighting based on confidence. Finally, the proposed method is compared with FedAvg, Fedprox, GCFL, and GCFL+ to verify the effectiveness of the proposed method. Experiments demonstrate that the proposed method outperforms other methods.
Abstract:In this paper, we address the challenges faced by Value Iteration Networks (VIN) in handling larger input maps and mitigating the impact of accumulated errors caused by increased iterations. We propose a novel approach, Value Iteration Networks with Gated Summarization Module (GS-VIN), which incorporates two main improvements: (1) employing an Adaptive Iteration Strategy in the Value Iteration module to reduce the number of iterations, and (2) introducing a Gated Summarization module to summarize the iterative process. The adaptive iteration strategy uses larger convolution kernels with fewer iteration times, reducing network depth and increasing training stability while maintaining the accuracy of the planning process. The gated summarization module enables the network to emphasize the entire planning process, rather than solely relying on the final global planning outcome, by temporally and spatially resampling the entire planning process within the VI module. We conduct experiments on 2D grid world path-finding problems and the Atari Mr. Pac-man environment, demonstrating that GS-VIN outperforms the baseline in terms of single-step accuracy, planning success rate, and overall performance across different map sizes. Additionally, we provide an analysis of the relationship between input size, kernel size, and the number of iterations in VI-based models, which is applicable to a majority of VI-based models and offers valuable insights for researchers and industrial deployment.
Abstract:A self-learning adaptive system (SLAS) uses machine learning to enable and enhance its adaptability. Such systems are expected to perform well in dynamic situations. For learning high-performance adaptation policy, some assumptions must be made on the environment-system dynamics when information about the real situation is incomplete. However, these assumptions cannot be expected to be always correct, and yet it is difficult to enumerate all possible assumptions. This leads to the problem of incomplete-information learning. We consider this problem as multiple model problem in terms of finding the adaptation policy that can cope with multiple models of environment-system dynamics. This paper proposes a novel approach to engineering the online adaptation of SLAS. It separates three concerns that are related to the adaptation policy and presents the modeling and synthesis process, with the goal of achieving higher model construction efficiency. In addition, it designs a meta-reinforcement learning algorithm for learning the meta policy over the multiple models, so that the meta policy can quickly adapt to the real environment-system dynamics. At last, it reports the case study on a robotic system to evaluate the adaptability of the approach.
Abstract:Security attacks present unique challenges to self-adaptive system design due to the adversarial nature of the environment. However, modeling the system as a single player, as done in prior works in security domain, is insufficient for the system under partial compromise and for the design of fine-grained defensive strategies where the rest of the system with autonomy can cooperate to mitigate the impact of attacks. To deal with such issues, we propose a new self-adaptive framework incorporating Bayesian game and model the defender (i.e., the system) at the granularity of components in system architecture. The system architecture model is translated into a Bayesian multi-player game, where each component is modeled as an independent player while security attacks are encoded as variant types for the components. The defensive strategy for the system is dynamically computed by solving the pure equilibrium to achieve the best possible system utility, improving the resiliency of the system against security attacks.