Abstract:The capability of autonomous exploration in complex, unknown environments is important in many robotic applications. While recent research on autonomous exploration have achieved much progress, there are still limitations, e.g., existing methods relying on greedy heuristics or optimal path planning are often hindered by repetitive paths and high computational demands. To address such limitations, we propose a novel exploration framework that utilizes the global topology information of observed environment to improve exploration efficiency while reducing computational overhead. Specifically, global information is utilized based on a skeletal topological graph representation of the environment geometry. We first propose an incremental skeleton extraction method based on wavefront propagation, based on which we then design an approach to generate a lightweight topological graph that can effectively capture the environment's structural characteristics. Building upon this, we introduce a finite state machine that leverages the topological structure to efficiently plan coverage paths, which can substantially mitigate the back-and-forth maneuvers (BFMs) problem. Experimental results demonstrate the superiority of our method in comparison with state-of-the-art methods. The source code will be made publicly available at: \url{https://github.com/Haochen-Niu/STGPlanner}.
Abstract:Recently, self-supervised learning (SSL) has been extensively studied. Theoretically, mutual information maximization (MIM) is an optimal criterion for SSL, with a strong theoretical foundation in information theory. However, it is difficult to directly apply MIM in SSL since the data distribution is not analytically available in applications. In practice, many existing methods can be viewed as approximate implementations of the MIM criterion. This work shows that, based on the invariance property of MI, explicit MI maximization can be applied to SSL under a generic distribution assumption, i.e., a relaxed condition of the data distribution. We further illustrate this by analyzing the generalized Gaussian distribution. Based on this result, we derive a loss function based on the MIM criterion using only second-order statistics. We implement the new loss for SSL and demonstrate its effectiveness via extensive experiments.
Abstract:In deep reinforcement learning applications, maximizing discounted reward is often employed instead of maximizing total reward to ensure the convergence and stability of algorithms, even though the performance metric for evaluating the policy remains the total reward. However, the optimal policies corresponding to these two objectives may not always be consistent. To address this issue, we analyzed the suboptimality of the policy obtained through maximizing discounted reward in relation to the policy that maximizes total reward and identified the influence of hyperparameters. Additionally, we proposed sufficient conditions for aligning the optimal policies of these two objectives under various settings. The primary contributions are as follows: We theoretically analyzed the factors influencing performance when using discounted reward as a proxy for total reward, thereby enhancing the theoretical understanding of this scenario. Furthermore, we developed methods to align the optimal policies of the two objectives in certain situations, which can improve the performance of reinforcement learning algorithms.
Abstract:The heterogeneity of neurological conditions, ranging from structural anomalies to functional impairments, presents a significant challenge in medical imaging analysis tasks. Moreover, the limited availability of well-annotated datasets constrains the development of robust analysis models. Against this backdrop, this study introduces a novel approach leveraging the inherent anatomical symmetrical features of the human brain to enhance the subsequent detection and segmentation analysis for brain diseases. A novel Symmetry-Aware Cross-Attention (SACA) module is proposed to encode symmetrical features of left and right hemispheres, and a proxy task to detect symmetrical features as the Symmetry-Aware Head (SAH) is proposed, which guides the pretraining of the whole network on a vast 3D brain imaging dataset comprising both healthy and diseased brain images across various MRI and CT. Through meticulous experimentation on downstream tasks, including both classification and segmentation for brain diseases, our model demonstrates superior performance over state-of-the-art methodologies, particularly highlighting the significance of symmetry-aware learning. Our findings advocate for the effectiveness of incorporating symmetry awareness into pretraining and set a new benchmark for medical imaging analysis, promising significant strides toward accurate and efficient diagnostic processes. Code is available at https://github.com/bitMyron/sa-swin.
Abstract:Semi-gradient Q-learning is applied in many fields, but due to the absence of an explicit loss function, studying its dynamics and implicit bias in the parameter space is challenging. This paper introduces the Fokker--Planck equation and employs partial data obtained through sampling to construct and visualize the effective loss landscape within a two-dimensional parameter space. This visualization reveals how the global minima in the loss landscape can transform into saddle points in the effective loss landscape, as well as the implicit bias of the semi-gradient method. Additionally, we demonstrate that saddle points, originating from the global minima in loss landscape, still exist in the effective loss landscape under high-dimensional parameter spaces and neural network settings. This paper develop a novel approach for probing implicit bias in semi-gradient Q-learning.
Abstract:Alignment is the most critical step in building large language models (LLMs) that meet human needs. With the rapid development of LLMs gradually surpassing human capabilities, traditional alignment methods based on human-annotation are increasingly unable to meet the scalability demands. Therefore, there is an urgent need to explore new sources of automated alignment signals and technical approaches. In this paper, we systematically review the recently emerging methods of automated alignment, attempting to explore how to achieve effective, scalable, automated alignment once the capabilities of LLMs exceed those of humans. Specifically, we categorize existing automated alignment methods into 4 major categories based on the sources of alignment signals and discuss the current status and potential development of each category. Additionally, we explore the underlying mechanisms that enable automated alignment and discuss the essential factors that make automated alignment technologies feasible and effective from the fundamental role of alignment.
Abstract:Training deep neural networks reliably requires access to large-scale datasets. However, obtaining such datasets can be challenging, especially in the context of neuroimaging analysis tasks, where the cost associated with image acquisition and annotation can be prohibitive. To mitigate both the time and financial costs associated with model development, a clear understanding of the amount of data required to train a satisfactory model is crucial. This paper focuses on an early stage phase of deep learning research, prior to model development, and proposes a strategic framework for estimating the amount of annotated data required to train patch-based segmentation networks. This framework includes the establishment of performance expectations using a novel Minor Boundary Adjustment for Threshold (MinBAT) method, and standardizing patch selection through the ROI-based Expanded Patch Selection (REPS) method. Our experiments demonstrate that tasks involving regions of interest (ROIs) with different sizes or shapes may yield variably acceptable Dice Similarity Coefficient (DSC) scores. By setting an acceptable DSC as the target, the required amount of training data can be estimated and even predicted as data accumulates. This approach could assist researchers and engineers in estimating the cost associated with data collection and annotation when defining a new segmentation task based on deep neural networks, ultimately contributing to their efficient translation to real-world applications.
Abstract:Graph learning has a wide range of applications in many scenarios, which require more need for data privacy. Federated learning is an emerging distributed machine learning approach that leverages data from individual devices or data centers to improve the accuracy and generalization of the model, while also protecting the privacy of user data. Graph-federated learning is mainly based on the classical federated learning framework i.e., the Client-Server framework. However, the Client-Server framework faces problems such as a single point of failure of the central server and poor scalability of network topology. First, we introduce the decentralized framework to graph-federated learning. Second, determine the confidence among nodes based on the similarity of data among nodes, subsequently, the gradient information is then aggregated by linear weighting based on confidence. Finally, the proposed method is compared with FedAvg, Fedprox, GCFL, and GCFL+ to verify the effectiveness of the proposed method. Experiments demonstrate that the proposed method outperforms other methods.
Abstract:Large language models (LLMs) like ChatGPT have gained increasing prominence in artificial intelligence, making a profound impact on society and various industries like business and science. However, the presence of false information on the internet and in text corpus poses a significant risk to the reliability and safety of LLMs, underscoring the urgent need to understand the mechanisms of how false information impacts and spreads in LLMs. In this paper, we investigate how false information spreads in LLMs and affects related responses by conducting a series of experiments on the effects of source authority, injection paradigm, and information relevance. Specifically, we compare four authority levels of information sources (Twitter, web blogs, news reports, and research papers), two common knowledge injection paradigms (in-context injection and learning-based injection), and three degrees of information relevance (direct, indirect, and peripheral). The experimental results show that (1) False information will spread and contaminate related memories in LLMs via a semantic diffusion process, i.e., false information has global detrimental effects beyond its direct impact. (2) Current LLMs are susceptible to authority bias, i.e., LLMs are more likely to follow false information presented in a trustworthy style like news or research papers, which usually causes deeper and wider pollution of information. (3) Current LLMs are more sensitive to false information through in-context injection than through learning-based injection, which severely challenges the reliability and safety of LLMs even if all training data are trusty and correct. The above findings raise the need for new false information defense algorithms to address the global impact of false information, and new alignment algorithms to unbiasedly lead LLMs to follow internal human values rather than superficial patterns.
Abstract:Visual simultaneous localization and mapping (SLAM) systems face challenges in detecting loop closure under the circumstance of large viewpoint changes. In this paper, we present an object-based loop closure detection method based on the spatial layout and semanic consistency of the 3D scene graph. Firstly, we propose an object-level data association approach based on the semantic information from semantic labels, intersection over union (IoU), object color, and object embedding. Subsequently, multi-view bundle adjustment with the associated objects is utilized to jointly optimize the poses of objects and cameras. We represent the refined objects as a 3D spatial graph with semantics and topology. Then, we propose a graph matching approach to select correspondence objects based on the structure layout and semantic property similarity of vertices' neighbors. Finally, we jointly optimize camera trajectories and object poses in an object-level pose graph optimization, which results in a globally consistent map. Experimental results demonstrate that our proposed data association approach can construct more accurate 3D semantic maps, and our loop closure method is more robust than point-based and object-based methods in circumstances with large viewpoint changes.