Abstract:Learned image compression (LIC) is currently the cutting-edge method. However, the inherent difference between testing and training images of LIC results in performance degradation to some extent. Especially for out-of-sample, out-of-distribution, or out-of-domain testing images, the performance of LIC dramatically degraded. Classical LIC is a serial image compression (SIC) approach that utilizes an open-loop architecture with serial encoding and decoding units. Nevertheless, according to the theory of automatic control, a closed-loop architecture holds the potential to improve the dynamic and static performance of LIC. Therefore, a circular image compression (CIC) approach with closed-loop encoding and decoding elements is proposed to minimize the gap between testing and training images and upgrade the capability of LIC. The proposed CIC establishes a nonlinear loop equation and proves that steady-state error between reconstructed and original images is close to zero by Talor series expansion. The proposed CIC method possesses the property of Post-Training and plug-and-play which can be built on any existing advanced SIC methods. Experimental results on five public image compression datasets demonstrate that the proposed CIC outperforms five open-source state-of-the-art competing SIC algorithms in reconstruction capacity. Experimental results further show that the proposed method is suitable for out-of-sample testing images with dark backgrounds, sharp edges, high contrast, grid shapes, or complex patterns.
Abstract:People with color vision deficiency often face challenges in distinguishing colors such as red and green, which can complicate daily tasks and require the use of assistive tools or environmental adjustments. Current support tools mainly focus on presentation-based aids, like the color vision modes found in iPhone accessibility settings. However, offering context-aware support, like indicating the doneness of meat, remains a challenge since task-specific solutions are not cost-effective for all possible scenarios. To address this, our paper proposes an application that provides contextual and autonomous assistance. This application is mainly composed of: (i) an augmented reality interface that efficiently captures context; and (ii) a multi-modal large language model-based reasoner that serves to cognitize the context and then reason about the appropriate support contents. Preliminary user experiments with two color vision deficient users across five different scenarios have demonstrated the effectiveness and universality of our application.