Linda
Abstract:A key function of the lexicon is to express novel concepts as they emerge over time through a process known as lexicalization. The most common lexicalization strategies are the reuse and combination of existing words, but they have typically been studied separately in the areas of word meaning extension and word formation. Here we offer an information-theoretic account of how both strategies are constrained by a fundamental tradeoff between competing communicative pressures: word reuse tends to preserve the average length of word forms at the cost of less precision, while word combination tends to produce more informative words at the expense of greater word length. We test our proposal against a large dataset of reuse items and compounds that appeared in English, French and Finnish over the past century. We find that these historically emerging items achieve higher levels of communicative efficiency than hypothetical ways of constructing the lexicon, and both literal reuse items and compounds tend to be more efficient than their non-literal counterparts. These results suggest that reuse and combination are both consistent with a unified account of lexicalization grounded in the theory of efficient communication.
Abstract:Large language models (LLMs) for code have become indispensable in various domains, including code generation, reasoning tasks and agent systems.While open-access code LLMs are increasingly approaching the performance levels of proprietary models, high-quality code LLMs suitable for rigorous scientific investigation, particularly those with reproducible data processing pipelines and transparent training protocols, remain limited. The scarcity is due to various challenges, including resource constraints, ethical considerations, and the competitive advantages of keeping models advanced. To address the gap, we introduce OpenCoder, a top-tier code LLM that not only achieves performance comparable to leading models but also serves as an ``open cookbook'' for the research community. Unlike most prior efforts, we release not only model weights and inference code, but also the reproducible training data, complete data processing pipeline, rigorous experimental ablation results, and detailed training protocols for open scientific research. Through this comprehensive release, we identify the key ingredients for building a top-tier code LLM: (1) code optimized heuristic rules for data cleaning and methods for data deduplication, (2) recall of text corpus related to code and (3) high-quality synthetic data in both annealing and supervised fine-tuning stages. By offering this level of openness, we aim to broaden access to all aspects of a top-tier code LLM, with OpenCoder serving as both a powerful model and an open foundation to accelerate research, and enable reproducible advancements in code AI.
Abstract:Deep reinforcement learning (DRL) has been extensively applied to Multi-Unmanned Aerial Vehicle (UAV) network (MUN) to effectively enable real-time adaptation to complex, time-varying environments. Nevertheless, most of the existing works assume a stationary user distribution (UD) or a dynamic one with predicted patterns. Such considerations may make the UD-specific strategies insufficient when a MUN is deployed in unknown environments. To this end, this paper investigates distributed user connectivity maximization problem in a MUN with generalization to arbitrary UDs. Specifically, the problem is first formulated into a time-coupled combinatorial nonlinear non-convex optimization with arbitrary underlying UDs. To make the optimization tractable, a multi-agent CNN-enhanced deep Q learning (MA-CDQL) algorithm is proposed. The algorithm integrates a ResNet-based CNN to the policy network to analyze the input UD in real time and obtain optimal decisions based on the extracted high-level UD features. To improve the learning efficiency and avoid local optimums, a heatmap algorithm is developed to transform the raw UD to a continuous density map. The map will be part of the true input to the policy network. Simulations are conducted to demonstrate the efficacy of UD heatmaps and the proposed algorithm in maximizing user connectivity as compared to K-means methods.
Abstract:Different from most of the formation strategies where robots require unique labels to identify topological neighbors to satisfy the predefined shape constraints, we here study the problem of identity-less distributed shape formation in homogeneous swarms, which is rarely studied in the literature. The absence of identities creates a unique challenge: how to design appropriate target formations and local behaviors that are suitable for identity-less formation shape control. To address this challenge, we propose the following novel results. First, to avoid using unique identities, we propose a dynamic formation description method and solve the formation consensus of robots in a locally distributed manner. Second, to handle identity-less distributed formations, we propose a fully distributed control law for homogeneous swarms based on locally sensed information. While the existing methods are applicable to simple cases where the target formation is stationary, ours can tackle more general maneuvering formations such as translation, rotation, or even shape deformation. Both numerical simulation and flight experiment are presented to verify the effectiveness and robustness of our proposed formation strategy.
Abstract:Large language model (LLM) safety is a critical issue, with numerous studies employing red team testing to enhance model security. Among these, jailbreak methods explore potential vulnerabilities by crafting malicious prompts that induce model outputs contrary to safety alignments. Existing black-box jailbreak methods often rely on model feedback, repeatedly submitting queries with detectable malicious instructions during the attack search process. Although these approaches are effective, the attacks may be intercepted by content moderators during the search process. We propose an improved transfer attack method that guides malicious prompt construction by locally training a mirror model of the target black-box model through benign data distillation. This method offers enhanced stealth, as it does not involve submitting identifiable malicious instructions to the target model during the search phase. Our approach achieved a maximum attack success rate of 92%, or a balanced value of 80% with an average of 1.5 detectable jailbreak queries per sample against GPT-3.5 Turbo on a subset of AdvBench. These results underscore the need for more robust defense mechanisms.
Abstract:The historical interaction sequences of users plays a crucial role in training recommender systems that can accurately predict user preferences. However, due to the arbitrariness of user behavior, the presence of noise in these sequences poses a challenge to predicting their next actions in recommender systems. To address this issue, our motivation is based on the observation that training noisy sequences and clean sequences (sequences without noise) with equal weights can impact the performance of the model. We propose a novel self-supervised Auxiliary Task Joint Training (ATJT) method aimed at more accurately reweighting noisy sequences in recommender systems. Specifically, we strategically select subsets from users' original sequences and perform random replacements to generate artificially replaced noisy sequences. Subsequently, we perform joint training on these artificially replaced noisy sequences and the original sequences. Through effective reweighting, we incorporate the training results of the noise recognition model into the recommender model. We evaluate our method on three datasets using a consistent base model. Experimental results demonstrate the effectiveness of introducing self-supervised auxiliary task to enhance the base model's performance.
Abstract:This paper introduces a new framework for clustering in a distributed network called Distributed Clustering based on Distributional Kernel (K) or KDC that produces the final clusters based on the similarity with respect to the distributions of initial clusters, as measured by K. It is the only framework that satisfies all three of the following properties. First, KDC guarantees that the combined clustering outcome from all sites is equivalent to the clustering outcome of its centralized counterpart from the combined dataset from all sites. Second, the maximum runtime cost of any site in distributed mode is smaller than the runtime cost in centralized mode. Third, it is designed to discover clusters of arbitrary shapes, sizes and densities. To the best of our knowledge, this is the first distributed clustering framework that employs a distributional kernel. The distribution-based clustering leads directly to significantly better clustering outcomes than existing methods of distributed clustering. In addition, we introduce a new clustering algorithm called Kernel Bounded Cluster Cores, which is the best clustering algorithm applied to KDC among existing clustering algorithms. We also show that KDC is a generic framework that enables a quadratic time clustering algorithm to deal with large datasets that would otherwise be impossible.
Abstract:This paper aims to explain how a deep neural network (DNN) gradually extracts new knowledge and forgets noisy features through layers in forward propagation. Up to now, although the definition of knowledge encoded by the DNN has not reached a consensus, Previous studies have derived a series of mathematical evidence to take interactions as symbolic primitive inference patterns encoded by a DNN. We extend the definition of interactions and, for the first time, extract interactions encoded by intermediate layers. We quantify and track the newly emerged interactions and the forgotten interactions in each layer during the forward propagation, which shed new light on the learning behavior of DNNs. The layer-wise change of interactions also reveals the change of the generalization capacity and instability of feature representations of a DNN.
Abstract:The significant computational cost of multiplications hinders the deployment of deep neural networks (DNNs) on edge devices. While multiplication-free models offer enhanced hardware efficiency, they typically sacrifice accuracy. As a solution, multiplication-reduced hybrid models have emerged to combine the benefits of both approaches. Particularly, prior works, i.e., NASA and NASA-F, leverage Neural Architecture Search (NAS) to construct such hybrid models, enhancing hardware efficiency while maintaining accuracy. However, they either entail costly retraining or encounter gradient conflicts, limiting both search efficiency and accuracy. Additionally, they overlook the acceleration opportunity introduced by accelerator search, yielding sub-optimal hardware performance. To overcome these limitations, we propose NASH, a Neural architecture and Accelerator Search framework for multiplication-reduced Hybrid models. Specifically, as for NAS, we propose a tailored zero-shot metric to pre-identify promising hybrid models before training, enhancing search efficiency while alleviating gradient conflicts. Regarding accelerator search, we innovatively introduce coarse-to-fine search to streamline the search process. Furthermore, we seamlessly integrate these two levels of searches to unveil NASH, obtaining the optimal model and accelerator pairing. Experiments validate our effectiveness, e.g., when compared with the state-of-the-art multiplication-based system, we can achieve $\uparrow$$2.14\times$ throughput and $\uparrow$$2.01\times$ FPS with $\uparrow$$0.25\%$ accuracy on CIFAR-100, and $\uparrow$$1.40\times$ throughput and $\uparrow$$1.19\times$ FPS with $\uparrow$$0.56\%$ accuracy on Tiny-ImageNet. Codes are available at \url{https://github.com/xuyang527/NASH.}
Abstract:Today's top advertisers typically manage hundreds of campaigns simultaneously and consistently launch new ones throughout the year. A crucial challenge for marketing managers is determining the optimal allocation of limited budgets across various ad lines in each campaign to maximize cumulative returns, especially given the huge uncertainty in return outcomes. In this paper, we propose to formulate budget allocation as a multi-task combinatorial bandit problem and introduce a novel online budget allocation system. The proposed system: i) integrates a Bayesian hierarchical model to intelligently utilize the metadata of campaigns and ad lines and budget size, ensuring efficient information sharing; ii) provides the flexibility to incorporate diverse modeling techniques such as Linear Regression, Gaussian Processes, and Neural Networks, catering to diverse environmental complexities; and iii) employs the Thompson sampling (TS) technique to strike a balance between exploration and exploitation. Through offline evaluation and online experiments, our system demonstrates robustness and adaptability, effectively maximizing the overall cumulative returns. A Python implementation of the proposed procedure is available at https://anonymous.4open.science/r/MCMAB.