Abstract:Evaluating and improving the security capabilities of code agents requires high-quality, executable vulnerability tasks. However, existing works rely on costly, unscalable manual reproduction and suffer from outdated data distributions. To address these, we present CVE-Factory, the first multi-agent framework to achieve expert-level quality in automatically transforming sparse CVE metadata into fully executable agentic tasks. Cross-validation against human expert reproductions shows that CVE-Factory achieves 95\% solution correctness and 96\% environment fidelity, confirming its expert-level quality. It is also evaluated on the latest realistic vulnerabilities and achieves a 66.2\% verified success. This automation enables two downstream contributions. First, we construct LiveCVEBench, a continuously updated benchmark of 190 tasks spanning 14 languages and 153 repositories that captures emerging threats including AI-tooling vulnerabilities. Second, we synthesize over 1,000 executable training environments, the first large-scale scaling of agentic tasks in code security. Fine-tuned Qwen3-32B improves from 5.3\% to 35.8\% on LiveCVEBench, surpassing Claude 4.5 Sonnet, with gains generalizing to Terminal Bench (12.5\% to 31.3\%). We open-source CVE-Factory, LiveCVEBench, Abacus-cve (fine-tuned model), training dataset, and leaderboard. All resources are available at https://github.com/livecvebench/CVE-Factory .
Abstract:The evolution of Large Language Model (LLM) agents for software engineering (SWE) is constrained by the scarcity of verifiable datasets, a bottleneck stemming from the complexity of constructing executable environments across diverse languages. To address this, we introduce MEnvAgent, a Multi-language framework for automated Environment construction that facilitates scalable generation of verifiable task instances. MEnvAgent employs a multi-agent Planning-Execution-Verification architecture to autonomously resolve construction failures and integrates a novel Environment Reuse Mechanism that reduces computational overhead by incrementally patching historical environments. Evaluations on MEnvBench, a new benchmark comprising 1,000 tasks across 10 languages, demonstrate that MEnvAgent outperforms baselines, improving Fail-to-Pass (F2P) rates by 8.6% while reducing time costs by 43%. Additionally, we demonstrate the utility of MEnvAgent by constructing MEnvData-SWE, the largest open-source polyglot dataset of realistic verifiable Docker environments to date, alongside solution trajectories that enable consistent performance gains on SWE tasks across a wide range of models. Our code, benchmark, and dataset are available at https://github.com/ernie-research/MEnvAgent.
Abstract:Test-time scaling improves the inference performance of Large Language Models (LLMs) but also incurs substantial computational costs. Although recent studies have reduced token consumption through dynamic self-consistency, they remain constrained by the high latency of sequential requests. In this paper, we propose SeerSC, a dynamic self-consistency framework that simultaneously improves token efficiency and latency by integrating System 1 and System 2 reasoning. Specifically, we utilize the rapid System 1 to compute the answer entropy for given queries. This score is then used to evaluate the potential of samples for scaling, enabling dynamic self-consistency under System 2. Benefiting from the advance and accurate estimation provided by System 1, the proposed method can reduce token usage while simultaneously achieving a significant decrease in latency through parallel generation. It outperforms existing methods, achieving up to a 47% reduction in token consumption and a 43% reduction in inference latency without significant performance loss.
Abstract:Evol-Instruct has made significant improvements as a data synthesis method in several areas. Existing methods typically rely on a fixed set of strategies to evolve, which require manual design and are monolithic in form. In addition, iterative evolution also makes the acquisition of hard samples expensive. In view of this, we propose the Tag-Evol framework, a more diverse and efficient instruction evolving method. Specifically, Tag-Evol uses diverse and specific knowledge tags as strategies to achieve controlled evolution by injecting different combinations of tags into the original instructions. Experiments with multiple backbones in diverse domain benchmarks show that the proposed method generates significantly better evolved data than other methods. Furthermore, we conduct a thorough analysis of the evolved data, demonstrating that Tag-Evol is not only efficient but also generates more diverse and challenging data.
Abstract:Large language models (LLMs) rely on key-value cache (KV cache) to accelerate decoding by reducing redundant computations. However, the KV cache memory usage grows substantially with longer text sequences, posing challenges for efficient deployment. Existing KV cache eviction methods prune tokens using prefilling-stage attention scores, causing inconsistency with actual inference queries, especially under tight memory budgets. In this paper, we propose Lookahead Q-Cache (LAQ), a novel eviction framework that generates low-cost pseudo lookahead queries to better approximate the true decoding-stage queries. By using these lookahead queries as the observation window for importance estimation, LAQ achieves more consistent and accurate KV cache eviction aligned with real inference scenarios. Experimental results on LongBench and Needle-in-a-Haystack benchmarks show that LAQ outperforms existing methods across various budget levels, achieving a 1 $\sim$ 4 point improvement on LongBench under limited cache budget. Moreover, LAQ is complementary to existing approaches and can be flexibly combined to yield further improvements.
Abstract:Large language models (LLMs) suffer from high inference latency due to the auto-regressive decoding process. Speculative decoding accelerates inference by generating multiple draft tokens using a lightweight model and verifying them in parallel. However, existing verification methods rely heavily on distributional consistency while overlooking semantic correctness, thereby limiting the potential speedup of speculative decoding. While some methods employ additional models for relaxed verification of draft tokens, they often fail to generalize effectively to more diverse or open-domain settings. In this work, we propose Reflective Verification, a training-free and semantics-aware approach that achieves a better trade-off between correctness and efficiency. Specifically, we leverage the inherent reflective capacity of LLMs to semantically assess the correctness of draft tokens in parallel during verification. Using prompt-based probing, we obtain both the original and reflective distributions of draft tokens in a single forward pass. The fusion of these distributions enables semantic-level verification of draft tokens that incorporates both consistency and correctness. Experiments across multiple domain benchmarks and model scales demonstrate that our method significantly increases the acceptance length of draft tokens without compromising model performance. Furthermore, we find that the proposed Reflective Verification is orthogonal to existing statistical verification methods, and their combination yields additional 5$\sim$15\% improvements in decoding speed.
Abstract:The table reasoning task, crucial for efficient data acquisition, aims to answer questions based on the given table. Recently, reasoning large language models (RLLMs) with Long Chain-of-Thought (Long CoT) significantly enhance reasoning capabilities, leading to brilliant performance on table reasoning. However, Long CoT suffers from high cost for training and exhibits low reliability due to table content hallucinations. Therefore, we propose Row-of-Thought (RoT), which performs iteratively row-wise table traversal, allowing for reasoning extension and reflection-based refinement at each traversal. Scaling reasoning length by row-wise traversal and leveraging reflection capabilities of LLMs, RoT is training-free. The sequential traversal encourages greater attention to the table, thus reducing hallucinations. Experiments show that RoT, using non-reasoning models, outperforms RLLMs by an average of 4.3%, and achieves state-of-the-art results on WikiTableQuestions and TableBench with comparable models, proving its effectiveness. Also, RoT outperforms Long CoT with fewer reasoning tokens, indicating higher efficiency.
Abstract:Code Sensitivity refers to the ability of Code LLMs to recognize and respond to details changes in problem descriptions. While current code benchmarks and instruction data focus on difficulty and diversity, sensitivity is overlooked. We first introduce the CTF-Code benchmark, constructed using counterfactual perturbations, minimizing input changes while maximizing output changes. The evaluation shows that many LLMs have a more than 10\% performance drop compared to the original problems. To fully utilize sensitivity, CTF-Instruct, an incremental instruction fine-tuning framework, extends on existing data and uses a selection mechanism to meet the three dimensions of difficulty, diversity, and sensitivity. Experiments show that LLMs fine-tuned with CTF-Instruct data achieve over a 2\% improvement on CTF-Code, and more than a 10\% performance boost on LiveCodeBench, validating the feasibility of enhancing LLMs' sensitivity to improve performance.




Abstract:Understanding the relationship between data compression and the capabilities of Large Language Models (LLMs) is crucial, especially in specialized domains like code intelligence. Prior work posited a linear relationship between compression and general intelligence. However, it overlooked the multifaceted nature of code that encompasses diverse programming languages and tasks, and struggled with fair evaluation of modern Code LLMs. We address this by evaluating a diverse array of open-source Code LLMs on comprehensive multi-language, multi-task code benchmarks. To address the challenge of efficient and fair evaluation of pre-trained LLMs' code intelligence, we introduce \textit{Format Annealing}, a lightweight, transparent training methodology designed to assess the intrinsic capabilities of these pre-trained models equitably. Compression efficacy, measured as bits-per-character (BPC), is determined using a novel, large-scale, and previously unseen code validation set derived from GitHub. Our empirical results reveal a fundamental logarithmic relationship between measured code intelligence and BPC. This finding refines prior hypotheses of linearity, which we suggest are likely observations of the logarithmic curve's tail under specific, limited conditions. Our work provides a more nuanced understanding of compression's role in developing code intelligence and contributes a robust evaluation framework in the code domain.
Abstract:The existing text-to-SQL systems have made significant progress in SQL query generation, but they still face numerous challenges. Existing systems often lack retrieval capabilities for open-domain databases, requiring users to manually filter relevant databases. Additionally, their cross-domain transferability is limited, making it challenging to accommodate diverse query requirements. To address these issues, we propose Abacus-SQL. Abacus-SQL utilizes database retrieval technology to accurately locate the required databases in an open-domain database environment. It also enhances the system cross-domain transfer ability through data augmentation methods. Moreover, Abacus-SQL employs Pre-SQL and Self-debug methods, thereby enhancing the accuracy of SQL queries. Experimental results demonstrate that Abacus-SQL performs excellently in multi-turn text-to-SQL tasks, effectively validating the approach's effectiveness. Abacus-SQL is publicly accessible at https://huozi.8wss.com/abacus-sql/.