Abstract:Large language models (LLMs) for code have become indispensable in various domains, including code generation, reasoning tasks and agent systems.While open-access code LLMs are increasingly approaching the performance levels of proprietary models, high-quality code LLMs suitable for rigorous scientific investigation, particularly those with reproducible data processing pipelines and transparent training protocols, remain limited. The scarcity is due to various challenges, including resource constraints, ethical considerations, and the competitive advantages of keeping models advanced. To address the gap, we introduce OpenCoder, a top-tier code LLM that not only achieves performance comparable to leading models but also serves as an ``open cookbook'' for the research community. Unlike most prior efforts, we release not only model weights and inference code, but also the reproducible training data, complete data processing pipeline, rigorous experimental ablation results, and detailed training protocols for open scientific research. Through this comprehensive release, we identify the key ingredients for building a top-tier code LLM: (1) code optimized heuristic rules for data cleaning and methods for data deduplication, (2) recall of text corpus related to code and (3) high-quality synthetic data in both annealing and supervised fine-tuning stages. By offering this level of openness, we aim to broaden access to all aspects of a top-tier code LLM, with OpenCoder serving as both a powerful model and an open foundation to accelerate research, and enable reproducible advancements in code AI.
Abstract:Recently, transformer-based methods have achieved state-of-the-art prediction quality on human pose estimation(HPE). Nonetheless, most of these top-performing transformer-based models are too computation-consuming and storage-demanding to deploy on edge computing platforms. Those transformer-based models that require fewer resources are prone to under-fitting due to their smaller scale and thus perform notably worse than their larger counterparts. Given this conundrum, we introduce SDPose, a new self-distillation method for improving the performance of small transformer-based models. To mitigate the problem of under-fitting, we design a transformer module named Multi-Cycled Transformer(MCT) based on multiple-cycled forwards to more fully exploit the potential of small model parameters. Further, in order to prevent the additional inference compute-consuming brought by MCT, we introduce a self-distillation scheme, extracting the knowledge from the MCT module to a naive forward model. Specifically, on the MSCOCO validation dataset, SDPose-T obtains 69.7% mAP with 4.4M parameters and 1.8 GFLOPs. Furthermore, SDPose-S-V2 obtains 73.5% mAP on the MSCOCO validation dataset with 6.2M parameters and 4.7 GFLOPs, achieving a new state-of-the-art among predominant tiny neural network methods. Our code is available at https://github.com/MartyrPenink/SDPose.