Abstract:Empirical evidence suggests that LLMs exhibit spontaneous cross-lingual alignment. Our findings suggest that although LLMs also demonstrate promising cross-lingual alignment in Information Extraction, there remains significant imbalance across languages, revealing an underlying deficiency in the IE alignment. To address this issue, we propose AlignXIE, a powerful code-based LLM that significantly enhances cross-lingual IE alignment through two strategies. Firstly, AlignXIE formulates IE across different languages, especially non-English ones, as code generation tasks, standardizing the representation of various schemas using Python classes to ensure consistency of the same ontology in different languages and align the schema. Secondly, it incorporates an IE cross-lingual alignment phase through a translated instance prediction task proposed in this paper to align the extraction process, utilizing ParallelNER, an IE bilingual parallel dataset with 257,190 samples, generated by our proposed LLM-based automatic pipeline for IE parallel data construction, with manual annotation to ensure quality. Ultimately, we obtain AlignXIE through multilingual IE instruction tuning. Although without training in 9 unseen languages, AlignXIE surpasses ChatGPT by $30.17\%$ and SoTA by $20.03\%$, thereby demonstrating superior cross-lingual IE capabilities. Comprehensive evaluations on 63 IE benchmarks in Chinese and English under various settings, demonstrate that AlignXIE significantly enhances cross-lingual and multilingual IE through boosting the IE alignment.
Abstract:We present Pyramid Attention Broadcast (PAB), a real-time, high quality and training-free approach for DiT-based video generation. Our method is founded on the observation that attention difference in the diffusion process exhibits a U-shaped pattern, indicating significant redundancy. We mitigate this by broadcasting attention outputs to subsequent steps in a pyramid style. It applies different broadcast strategies to each attention based on their variance for best efficiency. We further introduce broadcast sequence parallel for more efficient distributed inference. PAB demonstrates superior results across three models compared to baselines, achieving real-time generation for up to 720p videos. We anticipate that our simple yet effective method will serve as a robust baseline and facilitate future research and application for video generation.
Abstract:Generative models have achieved remarkable success in image, video, and text domains. Inspired by this, researchers have explored utilizing generative models to generate neural network parameters. However, these efforts have been limited by the parameter size and the practicality of generating high-performance parameters. In this paper, we propose COND P-DIFF, a novel approach that demonstrates the feasibility of controllable high-performance parameter generation, particularly for LoRA (Low-Rank Adaptation) weights, during the fine-tuning process. Specifically, we employ an autoencoder to extract efficient latent representations for parameters. We then train a conditional latent diffusion model to synthesize high-performing model parameters from random noise based on specific task conditions. Experimental results in both computer vision and natural language processing domains consistently demonstrate that COND P-DIFF can generate high-performance parameters conditioned on the given task. Moreover, we observe that the parameter distribution generated by COND P-DIFF exhibits differences compared to the distribution obtained through normal optimization methods, indicating a certain level of generalization capability. Our work paves the way for further exploration of condition-driven parameter generation, offering a promising direction for task-specific adaptation of neural networks.
Abstract:Sparse Knowledge Graphs (KGs), frequently encountered in real-world applications, contain fewer facts in the form of (head entity, relation, tail entity) compared to more populated KGs. The sparse KG completion task, which reasons answers for given queries in the form of (head entity, relation, ?) for sparse KGs, is particularly challenging due to the necessity of reasoning missing facts based on limited facts. Path-based models, known for excellent explainability, are often employed for this task. However, existing path-based models typically rely on external models to fill in missing facts and subsequently perform path reasoning. This approach introduces unexplainable factors or necessitates meticulous rule design. In light of this, this paper proposes an alternative approach by looking inward instead of seeking external assistance. We introduce a two-stage path reasoning model called LoGRe (Look Globally and Reason) over sparse KGs. LoGRe constructs a relation-path reasoning schema by globally analyzing the training data to alleviate the sparseness problem. Based on this schema, LoGRe then aggregates paths to reason out answers. Experimental results on five benchmark sparse KG datasets demonstrate the effectiveness of the proposed LoGRe model.
Abstract:Knowledge Base Question Answering (KBQA) has been a long-standing field to answer questions based on knowledge bases. Recently, the evolving dynamics of knowledge have attracted a growing interest in Temporal Knowledge Graph Question Answering (TKGQA), an emerging task to answer temporal questions. However, this field grapples with ambiguities in defining temporal questions and lacks a systematic categorization of existing methods for TKGQA. In response, this paper provides a thorough survey from two perspectives: the taxonomy of temporal questions and the methodological categorization for TKGQA. Specifically, we first establish a detailed taxonomy of temporal questions engaged in prior studies. Subsequently, we provide a comprehensive review of TKGQA techniques of two categories: semantic parsing-based and TKG embedding-based. Building on this review, the paper outlines potential research directions aimed at advancing the field of TKGQA. This work aims to serve as a comprehensive reference for TKGQA and to stimulate further research.
Abstract:Large Language Models~(LLMs) have become foundational in the realm of natural language processing, demonstrating performance improvements as model sizes increase. The Mixture-of-Experts~(MoE) approach offers a promising way to scale LLMs more efficiently by using fewer computational FLOPs through sparse activation. However, it suffers from significant memory overheads, necessitating model compression techniques. Post-training quantization, a popular method for model compression, proves less effective when directly applied to MoE models due to MoE's overlooked inherent sparsity. This paper explores several MoE structure-aware quantization heuristics, ranging from coarse to fine granularity, from MoE block to individual linear weight. Our investigations reveal critical principles: different MoE structures (i.e., blocks, experts, linear layers) require varying numbers of weight bits for effective and efficient quantization. Conclusions are supported by extensive benchmarking across two representative MoE models and six tasks. We further introduce novel enhancements to more accurately identify the most critical weights in MoE quantization that necessitate higher bit allocations, including the linear weight outlier scorer and MoE block scorer. Additionally, subsequent experiments validate our findings in the context of both weight and activation quantization.
Abstract:Temporal Knowledge Graph Question Answering (TKGQA) aims to answer questions with temporal intent over Temporal Knowledge Graphs (TKGs). The core challenge of this task lies in understanding the complex semantic information regarding multiple types of time constraints (e.g., before, first) in questions. Existing end-to-end methods implicitly model the time constraints by learning time-aware embeddings of questions and candidate answers, which is far from understanding the question comprehensively. Motivated by semantic-parsing-based approaches that explicitly model constraints in questions by generating logical forms with symbolic operators, we design fundamental temporal operators for time constraints and introduce a novel self-improvement Programming method for TKGQA (Prog-TQA). Specifically, Prog-TQA leverages the in-context learning ability of Large Language Models (LLMs) to understand the combinatory time constraints in the questions and generate corresponding program drafts with a few examples given. Then, it aligns these drafts to TKGs with the linking module and subsequently executes them to generate the answers. To enhance the ability to understand questions, Prog-TQA is further equipped with a self-improvement strategy to effectively bootstrap LLMs using high-quality self-generated drafts. Extensive experiments demonstrate the superiority of the proposed Prog-TQA on MultiTQ and CronQuestions datasets, especially in the Hits@1 metric.
Abstract:Event detection is one of the fundamental tasks in information extraction and knowledge graph. However, a realistic event detection system often needs to deal with new event classes constantly. These new classes usually have only a few labeled instances as it is time-consuming and labor-intensive to annotate a large number of unlabeled instances. Therefore, this paper proposes a new task, called class-incremental few-shot event detection. Nevertheless, this task faces two problems, i.e., old knowledge forgetting and new class overfitting. To solve these problems, this paper further presents a novel knowledge distillation and prompt learning based method, called Prompt-KD. Specifically, to handle the forgetting problem about old knowledge, Prompt-KD develops an attention based multi-teacher knowledge distillation framework, where the ancestor teacher model pre-trained on base classes is reused in all learning sessions, and the father teacher model derives the current student model via adaptation. On the other hand, in order to cope with the few-shot learning scenario and alleviate the corresponding new class overfitting problem, Prompt-KD is also equipped with a prompt learning mechanism. Extensive experiments on two benchmark datasets, i.e., FewEvent and MAVEN, demonstrate the superior performance of Prompt-KD.
Abstract:Temporal Knowledge Graph (TKG), which characterizes temporally evolving facts in the form of (subject, relation, object, timestamp), has attracted much attention recently. TKG reasoning aims to predict future facts based on given historical ones. However, existing TKG reasoning models are unable to abstain from predictions they are uncertain, which will inevitably bring risks in real-world applications. Thus, in this paper, we propose an abstention mechanism for TKG reasoning, which helps the existing models make selective, instead of indiscriminate, predictions. Specifically, we develop a confidence estimator, called Confidence Estimator with History (CEHis), to enable the existing TKG reasoning models to first estimate their confidence in making predictions, and then abstain from those with low confidence. To do so, CEHis takes two kinds of information into consideration, namely, the certainty of the current prediction and the accuracy of historical predictions. Experiments with representative TKG reasoning models on two benchmark datasets demonstrate the effectiveness of the proposed CEHis.
Abstract:In this paper, we propose KnowCoder, a Large Language Model (LLM) to conduct Universal Information Extraction (UIE) via code generation. KnowCoder aims to develop a kind of unified schema representation that LLMs can easily understand and an effective learning framework that encourages LLMs to follow schemas and extract structured knowledge accurately. To achieve these, KnowCoder introduces a code-style schema representation method to uniformly transform different schemas into Python classes, with which complex schema information, such as constraints among tasks in UIE, can be captured in an LLM-friendly manner. We further construct a code-style schema library covering over $\textbf{30,000}$ types of knowledge, which is the largest one for UIE, to the best of our knowledge. To ease the learning process of LLMs, KnowCoder contains a two-phase learning framework that enhances its schema understanding ability via code pretraining and its schema following ability via instruction tuning. After code pretraining on around $1.5$B automatically constructed data, KnowCoder already attains remarkable generalization ability and achieves relative improvements by $\textbf{49.8%}$ F1, compared to LLaMA2, under the few-shot setting. After instruction tuning, KnowCoder further exhibits strong generalization ability on unseen schemas and achieves up to $\textbf{12.5%}$ and $\textbf{21.9%}$, compared to sota baselines, under the zero-shot setting and the low resource setting, respectively. Additionally, based on our unified schema representations, various human-annotated datasets can simultaneously be utilized to refine KnowCoder, which achieves significant improvements up to $\textbf{7.5%}$ under the supervised setting.