Abstract:Pretrained language models have shown strong effectiveness in code-related tasks, such as code retrieval, code generation, code summarization, and code completion tasks. In this paper, we propose COde assistaNt viA retrieval-augmeNted language model (CONAN), which aims to build a code assistant by mimicking the knowledge-seeking behaviors of humans during coding. Specifically, it consists of a code structure aware retriever (CONAN-R) and a dual-view code representation-based retrieval-augmented generation model (CONAN-G). CONAN-R pretrains CodeT5 using Code-Documentation Alignment and Masked Entity Prediction tasks to make language models code structure-aware and learn effective representations for code snippets and documentation. Then CONAN-G designs a dual-view code representation mechanism for implementing a retrieval-augmented code generation model. CONAN-G regards the code documentation descriptions as prompts, which help language models better understand the code semantics. Our experiments show that CONAN achieves convincing performance on different code generation tasks and significantly outperforms previous retrieval augmented code generation models. Our further analyses show that CONAN learns tailored representations for both code snippets and documentation by aligning code-documentation data pairs and capturing structural semantics by masking and predicting entities in the code data. Additionally, the retrieved code snippets and documentation provide necessary information from both program language and natural language to assist the code generation process. CONAN can also be used as an assistant for Large Language Models (LLMs), providing LLMs with external knowledge in shorter code document lengths to improve their effectiveness on various code tasks. It shows the ability of CONAN to extract necessary information and help filter out the noise from retrieved code documents.
Abstract:This paper proposes an improved version of DurIAN-E (DurIAN-E 2), which is also a duration informed attention neural network for expressive and high-fidelity text-to-speech (TTS) synthesis. Similar with the DurIAN-E model, multiple stacked SwishRNN-based Transformer blocks are utilized as linguistic encoders and Style-Adaptive Instance Normalization (SAIN) layers are also exploited into frame-level encoders to improve the modeling ability of expressiveness in the proposed the DurIAN-E 2. Meanwhile, motivated by other TTS models using generative models such as VITS, the proposed DurIAN-E 2 utilizes variational autoencoders (VAEs) augmented with normalizing flows and a BigVGAN waveform generator with adversarial training strategy, which further improve the synthesized speech quality and expressiveness. Both objective test and subjective evaluation results prove that the proposed expressive TTS model DurIAN-E 2 can achieve better performance than several state-of-the-art approaches besides DurIAN-E.
Abstract:This paper presents an advanced end-to-end singing voice synthesis (SVS) system based on the source-filter mechanism that directly translates lyrical and melodic cues into expressive and high-fidelity human-like singing. Similarly to VISinger 2, the proposed system also utilizes training paradigms evolved from VITS and incorporates elements like the fundamental pitch (F0) predictor and waveform generation decoder. To address the issue that the coupling of mel-spectrogram features with F0 information may introduce errors during F0 prediction, we consider two strategies. Firstly, we leverage mel-cepstrum (mcep) features to decouple the intertwined mel-spectrogram and F0 characteristics. Secondly, inspired by the neural source-filter models, we introduce source excitation signals as the representation of F0 in the SVS system, aiming to capture pitch nuances more accurately. Meanwhile, differentiable mcep and F0 losses are employed as the waveform decoder supervision to fortify the prediction accuracy of speech envelope and pitch in the generated speech. Experiments on the Opencpop dataset demonstrate efficacy of the proposed model in synthesis quality and intonation accuracy.
Abstract:In this work, we present MedImageInsight, an open-source medical imaging embedding model. MedImageInsight is trained on medical images with associated text and labels across a diverse collection of domains, including X-Ray, CT, MRI, dermoscopy, OCT, fundus photography, ultrasound, histopathology, and mammography. Rigorous evaluations demonstrate MedImageInsight's ability to achieve state-of-the-art (SOTA) or human expert level performance across classification, image-image search, and fine-tuning tasks. Specifically, on public datasets, MedImageInsight achieves SOTA in CT 3D medical image retrieval, as well as SOTA in disease classification and search for chest X-ray, dermatology, and OCT imaging. Furthermore, MedImageInsight achieves human expert performance in bone age estimation (on both public and partner data), as well as AUC above 0.9 in most other domains. When paired with a text decoder, MedImageInsight achieves near SOTA level single image report findings generation with less than 10\% the parameters of other models. Compared to fine-tuning GPT-4o with only MIMIC-CXR data for the same task, MedImageInsight outperforms in clinical metrics, but underperforms on lexical metrics where GPT-4o sets a new SOTA. Importantly for regulatory purposes, MedImageInsight can generate ROC curves, adjust sensitivity and specificity based on clinical need, and provide evidence-based decision support through image-image search (which can also enable retrieval augmented generation). In an independent clinical evaluation of image-image search in chest X-ray, MedImageInsight outperformed every other publicly available foundation model evaluated by large margins (over 6 points AUC), and significantly outperformed other models in terms of AI fairness (across age and gender). We hope releasing MedImageInsight will help enhance collective progress in medical imaging AI research and development.
Abstract:Visual and auditory perception are two crucial ways humans experience the world. Text-to-video generation has made remarkable progress over the past year, but the absence of harmonious audio in generated video limits its broader applications. In this paper, we propose Semantic and Temporal Aligned Video-to-Audio (STA-V2A), an approach that enhances audio generation from videos by extracting both local temporal and global semantic video features and combining these refined video features with text as cross-modal guidance. To address the issue of information redundancy in videos, we propose an onset prediction pretext task for local temporal feature extraction and an attentive pooling module for global semantic feature extraction. To supplement the insufficient semantic information in videos, we propose a Latent Diffusion Model with Text-to-Audio priors initialization and cross-modal guidance. We also introduce Audio-Audio Align, a new metric to assess audio-temporal alignment. Subjective and objective metrics demonstrate that our method surpasses existing Video-to-Audio models in generating audio with better quality, semantic consistency, and temporal alignment. The ablation experiment validated the effectiveness of each module. Audio samples are available at https://y-ren16.github.io/STAV2A.
Abstract:Any-to-any singing voice conversion (SVC) aims to transfer a target singer's timbre to other songs using a short voice sample. However many diffusion model based any-to-any SVC methods, which have achieved impressive results, usually suffered from low efficiency caused by a mass of inference steps. In this paper, we propose LCM-SVC, a latent consistency distillation (LCD) based latent diffusion model (LDM) to accelerate inference speed. We achieved one-step or few-step inference while maintaining the high performance by distilling a pre-trained LDM based SVC model, which had the advantages of timbre decoupling and sound quality. Experimental results show that our proposed method can significantly reduce the inference time and largely preserve the sound quality and timbre similarity comparing with other state-of-the-art SVC models. Audio samples are available at https://sounddemos.github.io/lcm-svc.
Abstract:Large Multimodal Models (LMMs) have ushered in a new era in artificial intelligence, merging capabilities in both language and vision to form highly capable Visual Foundation Agents. These agents are postulated to excel across a myriad of tasks, potentially approaching general artificial intelligence. However, existing benchmarks fail to sufficiently challenge or showcase the full potential of LMMs in complex, real-world environments. To address this gap, we introduce VisualAgentBench (VAB), a comprehensive and pioneering benchmark specifically designed to train and evaluate LMMs as visual foundation agents across diverse scenarios, including Embodied, Graphical User Interface, and Visual Design, with tasks formulated to probe the depth of LMMs' understanding and interaction capabilities. Through rigorous testing across nine proprietary LMM APIs and eight open models, we demonstrate the considerable yet still developing agent capabilities of these models. Additionally, VAB constructs a trajectory training set constructed through hybrid methods including Program-based Solvers, LMM Agent Bootstrapping, and Human Demonstrations, promoting substantial performance improvements in LMMs through behavior cloning. Our work not only aims to benchmark existing models but also provides a solid foundation for future development into visual foundation agents. Code, train \& test data, and part of fine-tuned open LMMs are available at \url{https://github.com/THUDM/VisualAgentBench}.
Abstract:Traditional top-down robotic design often lacks the adaptability needed to handle real-world complexities, prompting the need for more flexible approaches. Therefore, this study introduces a novel cellular plasticity model tailored for bottom-up robotic design. The proposed model utilizes an activator-inhibitor reaction, a common foundation of Turing patterns, which are fundamental in morphogenesis -- the emergence of form from simple interactions. Turing patterns describe how diffusion and interactions between two chemical substances-an activator and an inhibitor-can lead to complex patterns and structures, such as the formation of limbs and feathers. Our study extends this concept by modeling cellular plasticity as an activator-inhibitor reaction augmented with environmental stimuli, encapsulating the core phenomena observed across various cell types: stem cells, neurons, and muscle cells. In addition to demonstrating self-regulation and self-containment, this approach ensures that a robot's form and function are direct emergent responses to its environment without a comprehensive environmental model. In the proposed model, a factory acts as the activator, producing a product that serves as the inhibitor, which is then influenced by environmental stimuli through consumption. These components are regulated by cellular plasticity phenomena as feedback loops. We calculate the equilibrium points of the model and the stability criterion. Simulations examine how varying parameters affect the system's transient behavior and the impact of competing functions on its functional capacity. Results show the model converges to a single stable equilibrium tuned to the environmental stimulation. Such dynamic behavior underscores the model's utility for generating predictable responses within robotics and biological systems, showcasing its potential for navigating the complexities of adaptive systems.
Abstract:Debugging is a vital aspect of software development, yet the debugging capabilities of Large Language Models (LLMs) remain largely unexplored. This paper first introduces DEBUGEVAL, a comprehensive benchmark designed to evaluate the debugging capabilities of LLMs. DEBUGEVAL collects data from existing high-quality datasets and designs four different tasks to evaluate the debugging effectiveness, including BUG Localization, BUG Identification, Code Review, and Code Repair. Additionally, to enhance the code debugging ability of LLMs, this paper proposes a CoMmunicative Agent BaSed DaTa REfinement FRamework (MASTER), which generates the refined code debugging data for supervised finetuning. Specifically, MASTER employs the Code Quizzer to generate refined data according to the defined tasks of DEBUGEVAL. Then the Code Learner acts as a critic and reserves the generated problems that it can not solve. Finally, the Code Teacher provides a detailed Chain-of-Thought based solution to deal with the generated problem. We collect the synthesized data and finetune the Code Learner to enhance the debugging ability and conduct the NeuDebugger model. Our experiments evaluate various LLMs and NeuDebugger in the zero-shot setting on DEBUGEVAL. Experimental results demonstrate that these 7B-scale LLMs have weaker debugging capabilities, even these code-oriented LLMs. On the contrary, these larger models (over 70B) show convincing debugging ability. Our further analyses illustrate that MASTER is an effective method to enhance the code debugging ability by synthesizing data for Supervised Fine-Tuning (SFT) LLMs.
Abstract:Generating semantically and temporally aligned audio content in accordance with video input has become a focal point for researchers, particularly following the remarkable breakthrough in text-to-video generation. In this work, we aim to offer insights into the video-to-audio generation paradigm, focusing on three crucial aspects: vision encoders, auxiliary embeddings, and data augmentation techniques. Beginning with a foundational model VTA-LDM built on a simple yet surprisingly effective intuition, we explore various vision encoders and auxiliary embeddings through ablation studies. Employing a comprehensive evaluation pipeline that emphasizes generation quality and video-audio synchronization alignment, we demonstrate that our model exhibits state-of-the-art video-to-audio generation capabilities. Furthermore, we provide critical insights into the impact of different data augmentation methods on enhancing the generation framework's overall capacity. We showcase possibilities to advance the challenge of generating synchronized audio from semantic and temporal perspectives. We hope these insights will serve as a stepping stone toward developing more realistic and accurate audio-visual generation models.