Abstract:The explainability of recommender systems has attracted significant attention in academia and industry. Many efforts have been made for explainable recommendations, yet evaluating the quality of the explanations remains a challenging and unresolved issue. In recent years, leveraging LLMs as evaluators presents a promising avenue in Natural Language Processing tasks (e.g., sentiment classification, information extraction), as they perform strong capabilities in instruction following and common-sense reasoning. However, evaluating recommendation explanatory texts is different from these NLG tasks, as its criteria are related to human perceptions and are usually subjective. In this paper, we investigate whether LLMs can serve as evaluators of recommendation explanations. To answer the question, we utilize real user feedback on explanations given from previous work and additionally collect third-party annotations and LLM evaluations. We design and apply a 3-level meta evaluation strategy to measure the correlation between evaluator labels and the ground truth provided by users. Our experiments reveal that LLMs, such as GPT4, can provide comparable evaluations with appropriate prompts and settings. We also provide further insights into combining human labels with the LLM evaluation process and utilizing ensembles of multiple heterogeneous LLM evaluators to enhance the accuracy and stability of evaluations. Our study verifies that utilizing LLMs as evaluators can be an accurate, reproducible and cost-effective solution for evaluating recommendation explanation texts. Our code is available at https://github.com/Xiaoyu-SZ/LLMasEvaluator.
Abstract:We present TIGERScore, a \textbf{T}rained metric that follows \textbf{I}nstruction \textbf{G}uidance to perform \textbf{E}xplainable, and \textbf{R}eference-free evaluation over a wide spectrum of text generation tasks. Different from other automatic evaluation methods that only provide arcane scores, TIGERScore is guided by the natural language instruction to provide error analysis to pinpoint the mistakes in the generated text. Our metric is based on LLaMA, trained on our meticulously curated instruction-tuning dataset MetricInstruct which covers 6 text generation tasks and 23 text generation datasets. The dataset consists of 48K quadruple in the form of (instruction, input, system output $\rightarrow$ error analysis). We collected the `system outputs' through diverse channels to cover different types of errors. To quantitatively assess our metric, we evaluate its correlation with human ratings on 5 held-in datasets, 2 held-out datasets and show that TIGERScore can achieve the highest overall Spearman's correlation with human ratings across these datasets and outperforms other metrics significantly. As a reference-free metric, its correlation can even surpass the best existing reference-based metrics. To further qualitatively assess the rationale generated by our metric, we conduct human evaluation on the generated explanations and found that the explanations are 70.8\% accurate. Through these experimental results, we believe TIGERScore demonstrates the possibility of building universal explainable metrics to evaluate any text generation task.