Abstract:Panoramic Image Generation has emerged as an important task in image generation, driven by growing demands for large-scale visuals in creative and technical applications. While diffusion models have dominated this field, they face inherent limitations, including the multilevel-coherence challenge and implementation complexity, leading to suboptimal outcomes. In this paper, we introduce PanoLlama, a novel framework that redefines panoramic image generation as a next-token prediction task. Building on the pre-trained LlamaGen architecture, we generate images in an autoregressive manner and develop an expansion strategy to handle size limitations. This method aligns with the image token structure in a crop-wise and training-free manner, resulting in high-quality panoramas with minimal seams and maximum scalability. PanoLlama demonstrates its effectiveness and versatility in our experiments, achieving the best overall performance while offering flexibility for multi-scale, multi-layout, and multi-guidance generation. It overcomes the challenges that diffusion-based methods fail to address, setting a new paradigm for panoramic image generation tasks. Code is available at https://github.com/0606zt/PanoLlama.
Abstract:Explainable recommendation systems are important to enhance transparency, accuracy, and fairness. Beyond result-level explanations, model-level interpretations can provide valuable insights that allow developers to optimize system designs and implement targeted improvements. However, most current approaches depend on specialized model designs, which often lack generalization capabilities. Given the various kinds of recommendation models, existing methods have limited ability to effectively interpret them. To address this issue, we propose RecSAE, an automatic, generalizable probing method for interpreting the internal states of Recommendation models with Sparse AutoEncoder. RecSAE serves as a plug-in module that does not affect original models during interpretations, while also enabling predictable modifications to their behaviors based on interpretation results. Firstly, we train an autoencoder with sparsity constraints to reconstruct internal activations of recommendation models, making the RecSAE latents more interpretable and monosemantic than the original neuron activations. Secondly, we automated the construction of concept dictionaries based on the relationship between latent activations and input item sequences. Thirdly, RecSAE validates these interpretations by predicting latent activations on new item sequences using the concept dictionary and deriving interpretation confidence scores from precision and recall. We demonstrate RecSAE's effectiveness on two datasets, identifying hundreds of highly interpretable concepts from pure ID-based models. Latent ablation studies further confirm that manipulating latent concepts produces corresponding changes in model output behavior, underscoring RecSAE's utility for both understanding and targeted tuning recommendation models. Code and data are publicly available at https://github.com/Alice1998/RecSAE.
Abstract:Diffusion models have recently gained recognition for generating diverse and high-quality content, especially in the domain of image synthesis. These models excel not only in creating fixed-size images but also in producing panoramic images. However, existing methods often struggle with spatial layout consistency when producing high-resolution panoramas, due to the lack of guidance of the global image layout. In this paper, we introduce the Multi-Scale Diffusion (MSD) framework, a plug-and-play module that extends the existing panoramic image generation framework to multiple resolution levels. By utilizing gradient descent techniques, our method effectively incorporates structural information from low-resolution images into high-resolution outputs. A comprehensive evaluation of the proposed method was conducted, comparing it with the prior works in qualitative and quantitative dimensions. The evaluation results demonstrate that our method significantly outperforms others in generating coherent high-resolution panoramas.
Abstract:Machine unlearning (MU) is becoming a promising paradigm to achieve the "right to be forgotten", where the training trace of any chosen data points could be eliminated, while maintaining the model utility on general testing samples after unlearning. With the advancement of forgetting research, many fundamental open questions remain unanswered: do different samples exhibit varying levels of difficulty in being forgotten? Further, does the sequence in which samples are forgotten, determined by their respective difficulty levels, influence the performance of forgetting algorithms? In this paper, we identify key factor affecting unlearning difficulty and the performance of unlearning algorithms. We find that samples with higher privacy risks are more likely to be unlearning, indicating that the unlearning difficulty varies among different samples which motives a more precise unlearning mode. Built upon this insight, we propose a general unlearning framework, dubbed RSU, which consists of Ranking module and SeqUnlearn module.
Abstract:Despite large language models (LLMs) increasingly becoming important components of news recommender systems, employing LLMs in such systems introduces new risks, such as the influence of cognitive biases in LLMs. Cognitive biases refer to systematic patterns of deviation from norms or rationality in the judgment process, which can result in inaccurate outputs from LLMs, thus threatening the reliability of news recommender systems. Specifically, LLM-based news recommender systems affected by cognitive biases could lead to the propagation of misinformation, reinforcement of stereotypes, and the formation of echo chambers. In this paper, we explore the potential impact of multiple cognitive biases on LLM-based news recommender systems, including anchoring bias, framing bias, status quo bias and group attribution bias. Furthermore, to facilitate future research at improving the reliability of LLM-based news recommender systems, we discuss strategies to mitigate these biases through data augmentation, prompt engineering and learning algorithms aspects.
Abstract:Task-specific fine-tuning is essential for the deployment of large language models (LLMs), but it requires significant computational resources and time. Existing solutions have proposed coreset selection methods to improve data efficiency and reduce model training overhead, but they still have limitations: 1) Overlooking valuable samples at high pruning rates, which degrades the coreset's performance. 2) Requiring high time overhead during coreset selection to fine-tune and evaluate the target LLM. In this paper, we introduce STAFF, a speculative coreset selection method. STAFF leverages a small model from the same family as the target LLM to efficiently estimate data scores and then verifies the scores on the target LLM to accurately identify and allocate more selection budget to important regions while maintaining coverage of easy regions. We evaluate STAFF on three LLMs and three downstream tasks and show that STAFF improves the performance of SOTA methods by up to 54.3% and reduces selection overhead by up to 70.5% at different pruning rates. Furthermore, we observe that the coreset selected by STAFF at low pruning rates (i.e., 20%) can even obtain better fine-tuning performance than the full dataset.
Abstract:The rapid development of diffusion models has significantly advanced AI-generated content (AIGC), particularly in Text-to-Image (T2I) and Text-to-Video (T2V) generation. Text-based video editing, leveraging these generative capabilities, has emerged as a promising field, enabling precise modifications to videos based on text prompts. Despite the proliferation of innovative video editing models, there is a conspicuous lack of comprehensive evaluation benchmarks that holistically assess these models' performance across various dimensions. Existing evaluations are limited and inconsistent, typically summarizing overall performance with a single score, which obscures models' effectiveness on individual editing tasks. To address this gap, we propose EditBoard, the first comprehensive evaluation benchmark for text-based video editing models. EditBoard encompasses nine automatic metrics across four dimensions, evaluating models on four task categories and introducing three new metrics to assess fidelity. This task-oriented benchmark facilitates objective evaluation by detailing model performance and providing insights into each model's strengths and weaknesses. By open-sourcing EditBoard, we aim to standardize evaluation and advance the development of robust video editing models.
Abstract:In autonomous driving, there is growing interest in end-to-end online vectorized map perception in bird's-eye-view (BEV) space, with an expectation that it could replace traditional high-cost offline high-definition (HD) maps. However, the accuracy and robustness of these methods can be easily compromised in challenging conditions, such as occlusion or adverse weather, when relying only on onboard sensors. In this paper, we propose HRMapNet, leveraging a low-cost Historical Rasterized Map to enhance online vectorized map perception. The historical rasterized map can be easily constructed from past predicted vectorized results and provides valuable complementary information. To fully exploit a historical map, we propose two novel modules to enhance BEV features and map element queries. For BEV features, we employ a feature aggregation module to encode features from both onboard images and the historical map. For map element queries, we design a query initialization module to endow queries with priors from the historical map. The two modules contribute to leveraging map information in online perception. Our HRMapNet can be integrated with most online vectorized map perception methods. We integrate it in two state-of-the-art methods, significantly improving their performance on both the nuScenes and Argoverse 2 datasets. The source code is released at https://github.com/HXMap/HRMapNet.
Abstract:Identifying structures in common forms the basis for networked systems design and optimization. However, real structures represented by graphs are often of varying sizes, leading to the low accuracy of traditional graph classification methods. These graphs are called cross-scale graphs. To overcome this limitation, in this study, we propose GSpect, an advanced spectral graph filtering model for cross-scale graph classification tasks. Compared with other methods, we use graph wavelet neural networks for the convolution layer of the model, which aggregates multi-scale messages to generate graph representations. We design a spectral-pooling layer which aggregates nodes to one node to reduce the cross-scale graphs to the same size. We collect and construct the cross-scale benchmark data set, MSG (Multi Scale Graphs). Experiments reveal that, on open data sets, GSpect improves the performance of classification accuracy by 1.62% on average, and for a maximum of 3.33% on PROTEINS. On MSG, GSpect improves the performance of classification accuracy by 15.55% on average. GSpect fills the gap in cross-scale graph classification studies and has potential to provide assistance in application research like diagnosis of brain disease by predicting the brain network's label and developing new drugs with molecular structures learned from their counterparts in other systems.
Abstract:Using questions in written text is an effective strategy to enhance readability. However, what makes an active reading question good, what the linguistic role of these questions is, and what is their impact on human reading remains understudied. We introduce GuidingQ, a dataset of 10K in-text questions from textbooks and scientific articles. By analyzing the dataset, we present a comprehensive understanding of the use, distribution, and linguistic characteristics of these questions. Then, we explore various approaches to generate such questions using language models. Our results highlight the importance of capturing inter-question relationships and the challenge of question position identification in generating these questions. Finally, we conduct a human study to understand the implication of such questions on reading comprehension. We find that the generated questions are of high quality and are almost as effective as human-written questions in terms of improving readers' memorization and comprehension.