Abstract:Integrated sensing and communications (ISAC) as one of the key technologies is capable of supporting high-speed communication and high-precision sensing for the upcoming 6G. This paper studies a waveform strategy by designing the orthogonal frequency division multiplexing (OFDM)-based reference signal (RS) for sensing and communication in ISAC system. We derive the closed-form expressions of Cram\'er-Rao Bound (CRB) for the distance and velocity estimations, and obtain the communication rate under the mean square error of channel estimation. Then, a weighted sum CRB minimization problem on the distance and velocity estimations is formulated by considering communication rate requirement and RS intervals constraints, which is a mixed-integer problem due to the discrete RS interval values. To solve this problem, some numerical methods are typically adopted to obtain the optimal solutions, whose computational complexity grow exponentially with the number of symbols and subcarriers of OFDM. Therefore, we propose a relaxation and approximation method to transform the original discrete problem into a continuous convex one and obtain the sub-optimal solutions. Finally, our proposed scheme is compared with the exhaustive search method in numerical simulations, which show slight gap between the obtained sub-optimal and optimal solutions, and this gap further decreases with large weight factor.
Abstract:Recently, the diffusion-based generative paradigm has achieved impressive general image generation capabilities with text prompts due to its accurate distribution modeling and stable training process. However, generating diverse remote sensing (RS) images that are tremendously different from general images in terms of scale and perspective remains a formidable challenge due to the lack of a comprehensive remote sensing image generation dataset with various modalities, ground sample distances (GSD), and scenes. In this paper, we propose a Multi-modal, Multi-GSD, Multi-scene Remote Sensing (MMM-RS) dataset and benchmark for text-to-image generation in diverse remote sensing scenarios. Specifically, we first collect nine publicly available RS datasets and conduct standardization for all samples. To bridge RS images to textual semantic information, we utilize a large-scale pretrained vision-language model to automatically output text prompts and perform hand-crafted rectification, resulting in information-rich text-image pairs (including multi-modal images). In particular, we design some methods to obtain the images with different GSD and various environments (e.g., low-light, foggy) in a single sample. With extensive manual screening and refining annotations, we ultimately obtain a MMM-RS dataset that comprises approximately 2.1 million text-image pairs. Extensive experimental results verify that our proposed MMM-RS dataset allows off-the-shelf diffusion models to generate diverse RS images across various modalities, scenes, weather conditions, and GSD. The dataset is available at https://github.com/ljl5261/MMM-RS.
Abstract:Recent Large Multi-Modal Models (LMMs) have made significant advancements in multi-modal alignment by employing lightweight connection modules to facilitate the representation and fusion of knowledge from existing pre-trained uni-modal models. However, these methods still rely on modality-specific and direction-specific connectors, leading to compartmentalized knowledge representations and reduced computational efficiency, which limits the model's ability to form unified multi-modal representations. To address these issues, we introduce a novel training framework, Alt-MoE, which employs the Mixture of Experts (MoE) as a unified multi-directional connector across modalities, and employs a multi-step sequential alternating unidirectional alignment strategy, which converges to bidirectional alignment over iterations. The extensive empirical studies revealed the following key points: 1) Alt-MoE achieves competitive results by integrating diverse knowledge representations from uni-modal models. This approach seamlessly fuses the specialized expertise of existing high-performance uni-modal models, effectively synthesizing their domain-specific knowledge into a cohesive multi-modal representation. 2) Alt-MoE efficiently scales to new tasks and modalities without altering its model architecture or training strategy. Furthermore, Alt-MoE operates in latent space, supporting vector pre-storage and real-time retrieval via lightweight multi-directional MoE, thereby facilitating massive data processing. Our methodology has been validated on several well-performing uni-modal models (LLAMA3, Qwen2, and DINOv2), achieving competitive results on a wide range of downstream tasks and datasets.
Abstract:Next-generation wireless networks are expected to develop a novel paradigm of integrated sensing and communications (ISAC) to enable both the high-accuracy sensing and high-speed communications. However, conventional mono-static ISAC systems, which simultaneously transmit and receive at the same equipment, may suffer from severe self-interference, and thus significantly degrade the system performance.To address this issue, this paper studies a multi-static ISAC system for cooperative target localization and communications, where the transmitter transmits ISAC signal to multiple receivers (REs) deployed at different positions. We derive the closed-form Cram\'{e}r-Rao bound (CRB) on the joint estimations of both the transmission delay and Doppler shift for cooperative target localization, and the CRB minimization problem is formulated by considering the cooperative cost and communication rate requirements for the REs. To solve this problem, we first decouple it into two subproblems for RE selection and transmit beamforming, respectively. Then, a minimax linkage-based method is proposed to solve the RE selection subproblem, and a successive convex approximation algorithm is adopted to deal with the transmit beamforming subproblem with non-convex constraints. Finally, numerical results validate our analysis and reveal that our proposed multi-static ISAC scheme achieves better ISAC performance than the conventional mono-static ones when the number of cooperative REs is large.
Abstract:The ability to learn compact, high-quality, and easy-to-optimize representations for visual data is paramount to many applications such as novel view synthesis and 3D reconstruction. Recent work has shown substantial success in using tensor networks to design such compact and high-quality representations. However, the ability to optimize tensor-based representations, and in particular, the highly compact tensor train representation, is still lacking. This has prevented practitioners from deploying the full potential of tensor networks for visual data. To this end, we propose 'Prolongation Upsampling Tensor Train (PuTT)', a novel method for learning tensor train representations in a coarse-to-fine manner. Our method involves the prolonging or `upsampling' of a learned tensor train representation, creating a sequence of 'coarse-to-fine' tensor trains that are incrementally refined. We evaluate our representation along three axes: (1). compression, (2). denoising capability, and (3). image completion capability. To assess these axes, we consider the tasks of image fitting, 3D fitting, and novel view synthesis, where our method shows an improved performance compared to state-of-the-art tensor-based methods. For full results see our project webpage: https://sebulo.github.io/PuTT_website/
Abstract:This paper studies the performance trade-off in a multi-user backscatter communication (BackCom) system for integrated sensing and communications (ISAC), where the multi-antenna ISAC transmitter sends excitation signals to power multiple single-antenna passive backscatter devices (BD), and the multi-antenna ISAC receiver performs joint sensing (localization) and communication tasks based on the backscattered signals from all BDs. Specifically, the localization performance is measured by the Cram\'{e}r-Rao bound (CRB) on the transmission delay and direction of arrival (DoA) of the backscattered signals, whose closed-form expression is obtained by deriving the corresponding Fisher information matrix (FIM), and the communication performance is characterized by the sum transmission rate of all BDs. Then, to characterize the trade-off between the localization and communication performances, the CRB minimization problem with the communication rate constraint is formulated, and is shown to be non-convex in general. By exploiting the hidden convexity, we propose an approach that combines fractional programming (FP) and Schur complement techniques to transform the original problem into an equivalent convex form. Finally, numerical results reveal the trade-off between the CRB and sum transmission rate achieved by our proposed method.
Abstract:State space models (SSMs) with selection mechanisms and hardware-aware architectures, namely Mamba, have recently demonstrated significant promise in long-sequence modeling. Since the self-attention mechanism in transformers has quadratic complexity with image size and increasing computational demands, the researchers are now exploring how to adapt Mamba for computer vision tasks. This paper is the first comprehensive survey aiming to provide an in-depth analysis of Mamba models in the field of computer vision. It begins by exploring the foundational concepts contributing to Mamba's success, including the state space model framework, selection mechanisms, and hardware-aware design. Next, we review these vision mamba models by categorizing them into foundational ones and enhancing them with techniques such as convolution, recurrence, and attention to improve their sophistication. We further delve into the widespread applications of Mamba in vision tasks, which include their use as a backbone in various levels of vision processing. This encompasses general visual tasks, Medical visual tasks (e.g., 2D / 3D segmentation, classification, and image registration, etc.), and Remote Sensing visual tasks. We specially introduce general visual tasks from two levels: High/Mid-level vision (e.g., Object detection, Segmentation, Video classification, etc.) and Low-level vision (e.g., Image super-resolution, Image restoration, Visual generation, etc.). We hope this endeavor will spark additional interest within the community to address current challenges and further apply Mamba models in computer vision.
Abstract:This paper revisits few-shot 3D point cloud semantic segmentation (FS-PCS), with a focus on two significant issues in the state-of-the-art: foreground leakage and sparse point distribution. The former arises from non-uniform point sampling, allowing models to distinguish the density disparities between foreground and background for easier segmentation. The latter results from sampling only 2,048 points, limiting semantic information and deviating from the real-world practice. To address these issues, we introduce a standardized FS-PCS setting, upon which a new benchmark is built. Moreover, we propose a novel FS-PCS model. While previous methods are based on feature optimization by mainly refining support features to enhance prototypes, our method is based on correlation optimization, referred to as Correlation Optimization Segmentation (COSeg). Specifically, we compute Class-specific Multi-prototypical Correlation (CMC) for each query point, representing its correlations to category prototypes. Then, we propose the Hyper Correlation Augmentation (HCA) module to enhance CMC. Furthermore, tackling the inherent property of few-shot training to incur base susceptibility for models, we propose to learn non-parametric prototypes for the base classes during training. The learned base prototypes are used to calibrate correlations for the background class through a Base Prototypes Calibration (BPC) module. Experiments on popular datasets demonstrate the superiority of COSeg over existing methods. The code is available at: https://github.com/ZhaochongAn/COSeg
Abstract:Difference features obtained by comparing the images of two periods play an indispensable role in the change detection (CD) task. However, a pair of bi-temporal images can exhibit diverse changes, which may cause various difference features. Identifying changed pixels with differ difference features to be the same category is thus a challenge for CD. Most nowadays' methods acquire distinctive difference features in implicit ways like enhancing image representation or supervision information. Nevertheless, informative image features only guarantee object semantics are modeled and can not guarantee that changed pixels have similar semantics in the difference feature space and are distinct from those unchanged ones. In this work, the generalized representation of various changes is learned straightforwardly in the difference feature space, and a novel Changes-Aware Transformer (CAT) for refining difference features is proposed. This generalized representation can perceive which pixels are changed and which are unchanged and further guide the update of pixels' difference features. CAT effectively accomplishes this refinement process through the stacked cosine cross-attention layer and self-attention layer. After refinement, the changed pixels in the difference feature space are closer to each other, which facilitates change detection. In addition, CAT is compatible with various backbone networks and existing CD methods. Experiments on remote sensing CD data set and street scene CD data set show that our method achieves state-of-the-art performance and has excellent generalization.
Abstract:Multifocus image fusion is an effective way to overcome the limitation of optical lenses. Many existing methods obtain fused results by generating decision maps. However, such methods often assume that the focused areas of the two source images are complementary, making it impossible to achieve simultaneous fusion of multiple images. Additionally, the existing methods ignore the impact of hard pixels on fusion performance, limiting the visual quality improvement of fusion image. To address these issues, a combining generation and recombination model, termed as GRFusion, is proposed. In GRFusion, focus property detection of each source image can be implemented independently, enabling simultaneous fusion of multiple source images and avoiding information loss caused by alternating fusion. This makes GRFusion free from the number of inputs. To distinguish the hard pixels from the source images, we achieve the determination of hard pixels by considering the inconsistency among the detection results of focus areas in source images. Furthermore, a multi-directional gradient embedding method for generating full focus images is proposed. Subsequently, a hard-pixel-guided recombination mechanism for constructing fused result is devised, effectively integrating the complementary advantages of feature reconstruction-based method and focused pixel recombination-based method. Extensive experimental results demonstrate the effectiveness and the superiority of the proposed method.The source code will be released on https://github.com/xxx/xxx.