Ben
Abstract:Large Language Models (LLMs) are widely integrated into interactive systems such as dialogue agents and task-oriented assistants. This growing ecosystem also raises supply-chain risks, where adversaries can distribute poisoned models that degrade downstream reliability and user trust. Existing backdoor attacks and defenses are largely prompt-centric, focusing on user-visible triggers while overlooking structural signals in multi-turn conversations. We propose Turn-based Structural Trigger (TST), a backdoor attack that activates from dialogue structure, using the turn index as the trigger and remaining independent of user inputs. Across four widely used open-source LLM models, TST achieves an average attack success rate (ASR) of 99.52% with minimal utility degradation, and remains effective under five representative defenses with an average ASR of 98.04%. The attack also generalizes well across instruction datasets, maintaining an average ASR of 99.19%. Our results suggest that dialogue structure constitutes an important and under-studied attack surface for multi-turn LLM systems, motivating structure-aware auditing and mitigation in practice.
Abstract:Recent advances in Large Language Models (LLMs) have incentivized the development of LLM-as-a-judge, an application of LLMs where they are used as judges to decide the quality of a certain piece of text given a certain context. However, previous studies have demonstrated that LLM-as-a-judge can be biased towards different aspects of the judged texts, which often do not align with human preference. One of the identified biases is language bias, which indicates that the decision of LLM-as-a-judge can differ based on the language of the judged texts. In this paper, we study two types of language bias in pairwise LLM-as-a-judge: (1) performance disparity between languages when the judge is prompted to compare options from the same language, and (2) bias towards options written in major languages when the judge is prompted to compare options of two different languages. We find that for same-language judging, there exist significant performance disparities across language families, with European languages consistently outperforming African languages, and this bias is more pronounced in culturally-related subjects. For inter-language judging, we observe that most models favor English answers, and that this preference is influenced more by answer language than question language. Finally, we investigate whether language bias is in fact caused by low-perplexity bias, a previously identified bias of LLM-as-a-judge, and we find that while perplexity is slightly correlated with language bias, language bias cannot be fully explained by perplexity only.
Abstract:Vision-Language Models (VLMs) are rapidly replacing unimodal encoders in modern retrieval and recommendation systems. While their capabilities are well-documented, their robustness against adversarial manipulation in competitive ranking scenarios remains largely unexplored. In this paper, we uncover a critical vulnerability in VLM-based product search: multimodal ranking attacks. We present Multimodal Generative Engine Optimization (MGEO), a novel adversarial framework that enables a malicious actor to unfairly promote a target product by jointly optimizing imperceptible image perturbations and fluent textual suffixes. Unlike existing attacks that treat modalities in isolation, MGEO employs an alternating gradient-based optimization strategy to exploit the deep cross-modal coupling within the VLM. Extensive experiments on real-world datasets using state-of-the-art models demonstrate that our coordinated attack significantly outperforms text-only and image-only baselines. These findings reveal that multimodal synergy, typically a strength of VLMs, can be weaponized to compromise the integrity of search rankings without triggering conventional content filters.
Abstract:Multi-modal entity alignment aims to identify equivalent entities between two multi-modal Knowledge graphs by integrating multi-modal data, such as images and text, to enrich the semantic representations of entities. However, existing methods may overlook the structural contextual information within each modality, making them vulnerable to interference from shallow features. To address these challenges, we propose MyGram, a modality-aware graph transformer with global distribution for multi-modal entity alignment. Specifically, we develop a modality diffusion learning module to capture deep structural contextual information within modalities and enable fine-grained multi-modal fusion. In addition, we introduce a Gram Loss that acts as a regularization constraint by minimizing the volume of a 4-dimensional parallelotope formed by multi-modal features, thereby achieving global distribution consistency across modalities. We conduct experiments on five public datasets. Results show that MyGram outperforms baseline models, achieving a maximum improvement of 4.8% in Hits@1 on FBDB15K, 9.9% on FBYG15K, and 4.3% on DBP15K.
Abstract:This document consolidates publicly reported technical details about Metas Llama 4 model family. It summarizes (i) released variants (Scout and Maverick) and the broader herd context including the previewed Behemoth teacher model, (ii) architectural characteristics beyond a high-level MoE description covering routed/shared-expert structure, early-fusion multimodality, and long-context design elements reported for Scout (iRoPE and length generalization strategies), (iii) training disclosures spanning pre-training, mid-training for long-context extension, and post-training methodology (lightweight SFT, online RL, and lightweight DPO) as described in release materials, (iv) developer-reported benchmark results for both base and instruction-tuned checkpoints, and (v) practical deployment constraints observed across major serving environments, including provider-specific context limits and quantization packaging. The manuscript also summarizes licensing obligations relevant to redistribution and derivative naming, and reviews publicly described safeguards and evaluation practices. The goal is to provide a compact technical reference for researchers and practitioners who need precise, source-backed facts about Llama 4.
Abstract:Large language models (LLMs) are increasingly deployed in security-sensitive applications, where they must follow system- or developer-specified instructions that define the intended task behavior, while completing benign user requests. When adversarial instructions appear in user queries or externally retrieved content, models may override intended logic. Recent defenses rely on supervised fine-tuning with benign and malicious labels. Although these methods achieve high attack rejection rates, we find that they rely on narrow correlations in defense data rather than harmful intent, leading to systematic rejection of safe inputs. We analyze three recurring shortcut behaviors induced by defense fine-tuning. \emph{Position bias} arises when benign content placed later in a prompt is rejected at much higher rates; across reasoning benchmarks, suffix-task rejection rises from below \textbf{10\%} to as high as \textbf{90\%}. \emph{Token trigger bias} occurs when strings common in attack data raise rejection probability even in benign contexts; inserting a single trigger token increases false refusals by up to \textbf{50\%}. \emph{Topic generalization bias} reflects poor generalization beyond the defense data distribution, with defended models suffering test-time accuracy drops of up to \textbf{40\%}. These findings suggest that current prompt-injection defenses frequently respond to attack-like surface patterns rather than the underlying intent. We introduce controlled diagnostic datasets and a systematic evaluation across two base models and multiple defense pipelines, highlighting limitations of supervised fine-tuning for reliable LLM security.
Abstract:Visual Question Answering (VQA) requires models to reason over multimodal information, combining visual and textual data. With the development of continual learning, significant progress has been made in retaining knowledge and adapting to new information in the VQA domain. However, current methods often struggle with balancing knowledge retention, adaptation, and robust feature representation. To address these challenges, we propose a novel framework with adaptive memory allocation and global noise filtering called MacVQA for visual question answering. MacVQA fuses visual and question information while filtering noise to ensure robust representations, and employs prototype-based memory allocation to optimize feature quality and memory usage. These designs enable MacVQA to balance knowledge acquisition, retention, and compositional generalization in continual VQA learning. Experiments on ten continual VQA tasks show that MacVQA outperforms existing baselines, achieving 43.38% average accuracy and 2.32% average forgetting on standard tasks, and 42.53% average accuracy and 3.60% average forgetting on novel composition tasks.
Abstract:Seismology faces fundamental challenges in state forecasting and reconstruction (e.g., earthquake early warning and ground motion prediction) and managing the parametric variability of source locations, mechanisms, and Earth models (e.g., subsurface structure and topography effects). Addressing these with simulations is hindered by their massive scale, both in synthetic data volumes and numerical complexity, while real-data efforts are constrained by models that inadequately reflect the Earth's complexity and by sparse sensor measurements from the field. Recent machine learning (ML) efforts offer promise, but progress is obscured by a lack of proper characterization, fair reporting, and rigorous comparisons. To address this, we introduce a Common Task Framework (CTF) for ML for seismic wavefields, starting with three distinct wavefield datasets. Our CTF features a curated set of datasets at various scales (global, crustal, and local) and task-specific metrics spanning forecasting, reconstruction, and generalization under realistic constraints such as noise and limited data. Inspired by CTFs in fields like natural language processing, this framework provides a structured and rigorous foundation for head-to-head algorithm evaluation. We illustrate the evaluation procedure with scores reported for two of the datasets, showcasing the performance of various methods and foundation models for reconstructing seismic wavefields from both simulated and real-world sensor measurements. The CTF scores reveal the strengths, limitations, and suitability for specific problem classes. Our vision is to replace ad hoc comparisons with standardized evaluations on hidden test sets, raising the bar for rigor and reproducibility in scientific ML.
Abstract:Knowledge Tracing (KT) aims to dynamically model a student's mastery of knowledge concepts based on their historical learning interactions. Most current methods rely on single-point estimates, which cannot distinguish true ability from outburst or carelessness, creating ambiguity in judging mastery. To address this issue, we propose a Knowledge Mastery-State Disambiguation for Knowledge Tracing model (KeenKT), which represents a student's knowledge state at each interaction using a Normal-Inverse-Gaussian (NIG) distribution, thereby capturing the fluctuations in student learning behaviors. Furthermore, we design an NIG-distance-based attention mechanism to model the dynamic evolution of the knowledge state. In addition, we introduce a diffusion-based denoising reconstruction loss and a distributional contrastive learning loss to enhance the model's robustness. Extensive experiments on six public datasets demonstrate that KeenKT outperforms SOTA KT models in terms of prediction accuracy and sensitivity to behavioral fluctuations. The proposed method yields the maximum AUC improvement of 5.85% and the maximum ACC improvement of 6.89%.




Abstract:Non-parametric quantization has received much attention due to its efficiency on parameters and scalability to a large codebook. In this paper, we present a unified formulation of different non-parametric quantization methods through the lens of lattice coding. The geometry of lattice codes explains the necessity of auxiliary loss terms when training auto-encoders with certain existing lookup-free quantization variants such as BSQ. As a step forward, we explore a few possible candidates, including random lattices, generalized Fibonacci lattices, and densest sphere packing lattices. Among all, we find the Leech lattice-based quantization method, which is dubbed as Spherical Leech Quantization ($Λ_{24}$-SQ), leads to both a simplified training recipe and an improved reconstruction-compression tradeoff thanks to its high symmetry and even distribution on the hypersphere. In image tokenization and compression tasks, this quantization approach achieves better reconstruction quality across all metrics than BSQ, the best prior art, while consuming slightly fewer bits. The improvement also extends to state-of-the-art auto-regressive image generation frameworks.