Ben
Abstract:Seismology faces fundamental challenges in state forecasting and reconstruction (e.g., earthquake early warning and ground motion prediction) and managing the parametric variability of source locations, mechanisms, and Earth models (e.g., subsurface structure and topography effects). Addressing these with simulations is hindered by their massive scale, both in synthetic data volumes and numerical complexity, while real-data efforts are constrained by models that inadequately reflect the Earth's complexity and by sparse sensor measurements from the field. Recent machine learning (ML) efforts offer promise, but progress is obscured by a lack of proper characterization, fair reporting, and rigorous comparisons. To address this, we introduce a Common Task Framework (CTF) for ML for seismic wavefields, starting with three distinct wavefield datasets. Our CTF features a curated set of datasets at various scales (global, crustal, and local) and task-specific metrics spanning forecasting, reconstruction, and generalization under realistic constraints such as noise and limited data. Inspired by CTFs in fields like natural language processing, this framework provides a structured and rigorous foundation for head-to-head algorithm evaluation. We illustrate the evaluation procedure with scores reported for two of the datasets, showcasing the performance of various methods and foundation models for reconstructing seismic wavefields from both simulated and real-world sensor measurements. The CTF scores reveal the strengths, limitations, and suitability for specific problem classes. Our vision is to replace ad hoc comparisons with standardized evaluations on hidden test sets, raising the bar for rigor and reproducibility in scientific ML.
Abstract:Knowledge Tracing (KT) aims to dynamically model a student's mastery of knowledge concepts based on their historical learning interactions. Most current methods rely on single-point estimates, which cannot distinguish true ability from outburst or carelessness, creating ambiguity in judging mastery. To address this issue, we propose a Knowledge Mastery-State Disambiguation for Knowledge Tracing model (KeenKT), which represents a student's knowledge state at each interaction using a Normal-Inverse-Gaussian (NIG) distribution, thereby capturing the fluctuations in student learning behaviors. Furthermore, we design an NIG-distance-based attention mechanism to model the dynamic evolution of the knowledge state. In addition, we introduce a diffusion-based denoising reconstruction loss and a distributional contrastive learning loss to enhance the model's robustness. Extensive experiments on six public datasets demonstrate that KeenKT outperforms SOTA KT models in terms of prediction accuracy and sensitivity to behavioral fluctuations. The proposed method yields the maximum AUC improvement of 5.85% and the maximum ACC improvement of 6.89%.
Abstract:Non-parametric quantization has received much attention due to its efficiency on parameters and scalability to a large codebook. In this paper, we present a unified formulation of different non-parametric quantization methods through the lens of lattice coding. The geometry of lattice codes explains the necessity of auxiliary loss terms when training auto-encoders with certain existing lookup-free quantization variants such as BSQ. As a step forward, we explore a few possible candidates, including random lattices, generalized Fibonacci lattices, and densest sphere packing lattices. Among all, we find the Leech lattice-based quantization method, which is dubbed as Spherical Leech Quantization ($Λ_{24}$-SQ), leads to both a simplified training recipe and an improved reconstruction-compression tradeoff thanks to its high symmetry and even distribution on the hypersphere. In image tokenization and compression tasks, this quantization approach achieves better reconstruction quality across all metrics than BSQ, the best prior art, while consuming slightly fewer bits. The improvement also extends to state-of-the-art auto-regressive image generation frameworks.
Abstract:Graph machine learning has advanced rapidly in tasks such as link prediction, anomaly detection, and node classification. As models scale up, pretrained graph models have become valuable intellectual assets because they encode extensive computation and domain expertise. Building on these advances, Graph Foundation Models (GFMs) mark a major step forward by jointly pretraining graph and text encoders on massive and diverse data. This unifies structural and semantic understanding, enables zero-shot inference, and supports applications such as fraud detection and biomedical analysis. However, the high pretraining cost and broad cross-domain knowledge in GFMs also make them attractive targets for model extraction attacks (MEAs). Prior work has focused only on small graph neural networks trained on a single graph, leaving the security implications for large-scale and multimodal GFMs largely unexplored. This paper presents the first systematic study of MEAs against GFMs. We formalize a black-box threat model and define six practical attack scenarios covering domain-level and graph-specific extraction goals, architectural mismatch, limited query budgets, partial node access, and training data discrepancies. To instantiate these attacks, we introduce a lightweight extraction method that trains an attacker encoder using supervised regression of graph embeddings. Even without contrastive pretraining data, this method learns an encoder that stays aligned with the victim text encoder and preserves its zero-shot inference ability on unseen graphs. Experiments on seven datasets show that the attacker can approximate the victim model using only a tiny fraction of its original training cost, with almost no loss in accuracy. These findings reveal that GFMs greatly expand the MEA surface and highlight the need for deployment-aware security defenses in large-scale graph learning systems.
Abstract:The development and evaluation of social capabilities in AI agents require complex environments where competitive and cooperative behaviours naturally emerge. While game-theoretic properties can explain why certain teams or agent populations outperform others, more abstract behaviours, such as convention following, are harder to control in training and evaluation settings. The Melting Pot contest is a social AI evaluation suite designed to assess the cooperation capabilities of AI systems. In this paper, we apply a Bayesian approach known as Measurement Layouts to infer the capability profiles of multi-agent systems in the Melting Pot contest. We show that these capability profiles not only predict future performance within the Melting Pot suite but also reveal the underlying prosocial abilities of agents. Our analysis indicates that while higher prosocial capabilities sometimes correlate with better performance, this is not a universal trend-some lower-scoring agents exhibit stronger cooperation abilities. Furthermore, we find that top-performing contest submissions are more likely to achieve high scores in scenarios where prosocial capabilities are not required. These findings, together with reports that the contest winner used a hard-coded solution tailored to specific environments, suggest that at least one top-performing team may have optimised for conditions where cooperation was not necessary, potentially exploiting limitations in the evaluation framework. We provide recommendations for improving the annotation of cooperation demands and propose future research directions to account for biases introduced by different testing environments. Our results demonstrate that Measurement Layouts offer both strong predictive accuracy and actionable insights, contributing to a more transparent and generalisable approach to evaluating AI systems in complex social settings.
Abstract:Generative models are a promising tool to produce cosmological simulations but face significant challenges in scalability, physical consistency, and adherence to domain symmetries, limiting their utility as alternatives to $N$-body simulations. To address these limitations, we introduce a score-based generative model with an equivariant graph neural network that simulates gravitational clustering of galaxies across cosmologies starting from an informed prior, respects periodic boundaries, and scales to full galaxy counts in simulations. A novel topology-aware noise schedule, crucial for large geometric graphs, is introduced. The proposed equivariant score-based model successfully generates full-scale cosmological point clouds of up to 600,000 halos, respects periodicity and a uniform prior, and outperforms existing diffusion models in capturing clustering statistics while offering significant computational advantages. This work advances cosmology by introducing a generative model designed to closely resemble the underlying gravitational clustering of structure formation, moving closer to physically realistic and efficient simulators for the evolution of large-scale structures in the universe.




Abstract:World models have been widely utilized in robotics, gaming, and auto-driving. However, their applications on natural language tasks are relatively limited. In this paper, we construct the dialogue world model, which could predict the user's emotion, sentiment, and intention, and future utterances. By defining a POMDP, we argue emotion, sentiment and intention can be modeled as the user belief and solved by maximizing the information bottleneck. By this user belief modeling, we apply the model-based reinforcement learning framework to the dialogue system, and propose a framework called DreamCUB. Experiments show that the pretrained dialogue world model can achieve state-of-the-art performances on emotion classification and sentiment identification, while dialogue quality is also enhanced by joint training of the policy, critic and dialogue world model. Further analysis shows that this manner holds a reasonable exploration-exploitation balance and also transfers well to out-of-domain scenarios such as empathetic dialogues.
Abstract:Machine learning (ML) models have significantly grown in complexity and utility, driving advances across multiple domains. However, substantial computational resources and specialized expertise have historically restricted their wide adoption. Machine-Learning-as-a-Service (MLaaS) platforms have addressed these barriers by providing scalable, convenient, and affordable access to sophisticated ML models through user-friendly APIs. While this accessibility promotes widespread use of advanced ML capabilities, it also introduces vulnerabilities exploited through Model Extraction Attacks (MEAs). Recent studies have demonstrated that adversaries can systematically replicate a target model's functionality by interacting with publicly exposed interfaces, posing threats to intellectual property, privacy, and system security. In this paper, we offer a comprehensive survey of MEAs and corresponding defense strategies. We propose a novel taxonomy that classifies MEAs according to attack mechanisms, defense approaches, and computing environments. Our analysis covers various attack techniques, evaluates their effectiveness, and highlights challenges faced by existing defenses, particularly the critical trade-off between preserving model utility and ensuring security. We further assess MEAs within different computing paradigms and discuss their technical, ethical, legal, and societal implications, along with promising directions for future research. This systematic survey aims to serve as a valuable reference for researchers, practitioners, and policymakers engaged in AI security and privacy. Additionally, we maintain an online repository continuously updated with related literature at https://github.com/kzhao5/ModelExtractionPapers.
Abstract:Large Language Models (LLMs) are widely used in sensitive domains, including healthcare, finance, and legal services, raising concerns about potential private information leaks during inference. Privacy extraction attacks, such as jailbreaking, expose vulnerabilities in LLMs by crafting inputs that force the models to output sensitive information. However, these attacks cannot verify whether the extracted private information is accurate, as no public datasets exist for cross-validation, leaving a critical gap in private information detection during inference. To address this, we propose PrivacyXray, a novel framework detecting privacy breaches by analyzing LLM inner states. Our analysis reveals that LLMs exhibit higher semantic coherence and probabilistic certainty when generating correct private outputs. Based on this, PrivacyXray detects privacy breaches using four metrics: intra-layer and inter-layer semantic similarity, token-level and sentence-level probability distributions. PrivacyXray addresses critical challenges in private information detection by overcoming the lack of open-source private datasets and eliminating reliance on external data for validation. It achieves this through the synthesis of realistic private data and a detection mechanism based on the inner states of LLMs. Experiments show that PrivacyXray achieves consistent performance, with an average accuracy of 92.69% across five LLMs. Compared to state-of-the-art methods, PrivacyXray achieves significant improvements, with an average accuracy increase of 20.06%, highlighting its stability and practical utility in real-world applications.
Abstract:Computational astrochemical models are essential for helping us interpret and understand the observations of different astrophysical environments. In the age of high-resolution telescopes such as JWST and ALMA, the substructure of many objects can be resolved, raising the need for astrochemical modeling at these smaller scales, meaning that the simulations of these objects need to include both the physics and chemistry to accurately model the observations. The computational cost of the simulations coupling both the three-dimensional hydrodynamics and chemistry is enormous, creating an opportunity for surrogate models that can effectively substitute the chemical solver. In this work we present surrogate models that can replace the original chemical code, namely Latent Augmented Neural Ordinary Differential Equations. We train these surrogate architectures on three datasets of increasing physical complexity, with the last dataset derived directly from a three-dimensional simulation of a molecular cloud using a Photodissociation Region (PDR) code, 3D-PDR. We show that these surrogate models can provide speedup and reproduce the original observable column density maps of the dataset. This enables the rapid inference of the chemistry (on the GPU), allowing for the faster statistical inference of observations or increasing the resolution in hydrodynamical simulations of astrophysical environments.