Abstract:The well-known generalization problem hinders the application of artificial neural networks in continuous-time prediction tasks with varying latent dynamics. In sharp contrast, biological systems can neatly adapt to evolving environments benefiting from real-time feedback mechanisms. Inspired by the feedback philosophy, we present feedback neural networks, showing that a feedback loop can flexibly correct the learned latent dynamics of neural ordinary differential equations (neural ODEs), leading to a prominent generalization improvement. The feedback neural network is a novel two-DOF neural network, which possesses robust performance in unseen scenarios with no loss of accuracy performance on previous tasks. A linear feedback form is presented to correct the learned latent dynamics firstly, with a convergence guarantee. Then, domain randomization is utilized to learn a nonlinear neural feedback form. Finally, extensive tests including trajectory prediction of a real irregular object and model predictive control of a quadrotor with various uncertainties, are implemented, indicating significant improvements over state-of-the-art model-based and learning-based methods.
Abstract:High-precision control for nonlinear systems is impeded by the low-fidelity dynamical model and external disturbance. Especially, the intricate coupling between internal uncertainty and external disturbance is usually difficult to be modeled explicitly. Here we show an effective and convergent algorithm enabling accurate estimation of the coupled disturbance via combining control and learning philosophies. Specifically, by resorting to Chebyshev series expansion, the coupled disturbance is firstly decomposed into an unknown parameter matrix and two known structures depending on system state and external disturbance respectively. A Regularized Least Squares (RLS) algorithm is subsequently formalized to learn the parameter matrix by using historical time-series data. Finally, a higher-order disturbance observer (HODO) is developed to achieve a high-precision estimation of the coupled disturbance by utilizing the learned portion. The efficiency of the proposed algorithm is evaluated through extensive simulations. We believe this work can offer a new option to merge learning schemes into the control framework for addressing existing intractable control problems.
Abstract:This paper studies the continuous-time q-learning in the mean-field jump-diffusion models from the representative agent's perspective. To overcome the challenge when the population distribution may not be directly observable, we introduce the integrated q-function in decoupled form (decoupled Iq-function) and establish its martingale characterization together with the value function, which provides a unified policy evaluation rule for both mean-field game (MFG) and mean-field control (MFC) problems. Moreover, depending on the task to solve the MFG or MFC problem, we can employ the decoupled Iq-function by different means to learn the mean-field equilibrium policy or the mean-field optimal policy respectively. As a result, we devise a unified q-learning algorithm for both MFG and MFC problems by utilizing all test policies stemming from the mean-field interactions. For several examples in the jump-diffusion setting, within and beyond the LQ framework, we can obtain the exact parameterization of the decoupled Iq-functions and the value functions, and illustrate our algorithm from the representative agent's perspective with satisfactory performance.
Abstract:This paper studies continuous-time reinforcement learning for controlled jump-diffusion models by featuring the q-function (the continuous-time counterpart of Q-function) and the q-learning algorithms under the Tsallis entropy regularization. Contrary to the conventional Shannon entropy, the general form of Tsallis entropy renders the optimal policy not necessary a Gibbs measure, where some Lagrange multiplier and KKT multiplier naturally arise from certain constraints to ensure the learnt policy to be a probability distribution. As a consequence,the relationship between the optimal policy and the q-function also involves the Lagrange multiplier. In response, we establish the martingale characterization of the q-function under Tsallis entropy and devise two q-learning algorithms depending on whether the Lagrange multiplier can be derived explicitly or not. In the latter case, we need to consider different parameterizations of the q-function and the policy and update them alternatively. Finally, we examine two financial applications, namely an optimal portfolio liquidation problem and a non-LQ control problem. It is interesting to see therein that the optimal policies under the Tsallis entropy regularization can be characterized explicitly, which are distributions concentrate on some compact support. The satisfactory performance of our q-learning algorithm is illustrated in both examples.
Abstract:In drug discovery, in vitro and in vivo experiments reveal biochemical activities related to the efficacy and toxicity of compounds. The experimental data accumulate into massive, ever-evolving, and sparse datasets. Quantitative Structure-Activity Relationship (QSAR) models, which predict biochemical activities using only the structural information of compounds, face challenges in integrating the evolving experimental data as studies progress. We develop QSAR-Complete (QComp), a data completion framework to address this issue. Based on pre-existing QSAR models, QComp utilizes the correlation inherent in experimental data to enhance prediction accuracy across various tasks. Moreover, QComp emerges as a promising tool for guiding the optimal sequence of experiments by quantifying the reduction in statistical uncertainty for specific endpoints, thereby aiding in rational decision-making throughout the drug discovery process.
Abstract:Traffic cameras remain the primary source data for surveillance activities such as congestion and incident monitoring. To date, State agencies continue to rely on manual effort to extract data from networked cameras due to limitations of the current automatic vision systems including requirements for complex camera calibration and inability to generate high resolution data. This study implements a three-stage video analytics framework for extracting high-resolution traffic data such vehicle counts, speed, and acceleration from infrastructure-mounted CCTV cameras. The key components of the framework include object recognition, perspective transformation, and vehicle trajectory reconstruction for traffic data collection. First, a state-of-the-art vehicle recognition model is implemented to detect and classify vehicles. Next, to correct for camera distortion and reduce partial occlusion, an algorithm inspired by two-point linear perspective is utilized to extracts the region of interest (ROI) automatically, while a 2D homography technique transforms the CCTV view to bird's-eye view (BEV). Cameras are calibrated with a two-layer matrix system to enable the extraction of speed and acceleration by converting image coordinates to real-world measurements. Individual vehicle trajectories are constructed and compared in BEV using two time-space-feature-based object trackers, namely Motpy and BYTETrack. The results of the current study showed about +/- 4.5% error rate for directional traffic counts, less than 10% MSE for speed bias between camera estimates in comparison to estimates from probe data sources. Extracting high-resolution data from traffic cameras has several implications, ranging from improvements in traffic management and identify dangerous driving behavior, high-risk areas for accidents, and other safety concerns, enabling proactive measures to reduce accidents and fatalities.
Abstract:Traffic volume data collection is a crucial aspect of transportation engineering and urban planning, as it provides vital insights into traffic patterns, congestion, and infrastructure efficiency. Traditional manual methods of traffic data collection are both time-consuming and costly. However, the emergence of modern technologies, particularly Light Detection and Ranging (LiDAR), has revolutionized the process by enabling efficient and accurate data collection. Despite the benefits of using LiDAR for traffic data collection, previous studies have identified two major limitations that have impeded its widespread adoption. These are the need for multiple LiDAR systems to obtain complete point cloud information of objects of interest, as well as the labor-intensive process of annotating 3D bounding boxes for object detection tasks. In response to these challenges, the current study proposes an innovative framework that alleviates the need for multiple LiDAR systems and simplifies the laborious 3D annotation process. To achieve this goal, the study employed a single LiDAR system, that aims at reducing the data acquisition cost and addressed its accompanying limitation of missing point cloud information by developing a Point Cloud Completion (PCC) framework to fill in missing point cloud information using point density. Furthermore, we also used zero-shot learning techniques to detect vehicles and pedestrians, as well as proposed a unique framework for extracting low to high features from the object of interest, such as height, acceleration, and speed. Using the 2D bounding box detection and extracted height information, this study is able to generate 3D bounding boxes automatically without human intervention.
Abstract:Lensless cameras multiplex the incoming light before it is recorded by the sensor. This ability to multiplex the incoming light has led to the development of ultra-thin, high-speed, and single-shot 3D imagers. Recently, there have been various attempts at demonstrating another useful aspect of lensless cameras - their ability to preserve the privacy of a scene by capturing encrypted measurements. However, existing lensless camera designs suffer numerous inherent privacy vulnerabilities. To demonstrate this, we develop the first comprehensive attack model for encryption cameras, and propose OpEnCam -- a novel lensless OPtical ENcryption CAmera design that overcomes these vulnerabilities. OpEnCam encrypts the incoming light before capturing it using the modulating ability of optical masks. Recovery of the original scene from an OpEnCam measurement is possible only if one has access to the camera's encryption key, defined by the unique optical elements of each camera. Our OpEnCam design introduces two major improvements over existing lensless camera designs - (a) the use of two co-axially located optical masks, one stuck to the sensor and the other a few millimeters above the sensor and (b) the design of mask patterns, which are derived heuristically from signal processing ideas. We show, through experiments, that OpEnCam is robust against a range of attack types while still maintaining the imaging capabilities of existing lensless cameras. We validate the efficacy of OpEnCam using simulated and real data. Finally, we built and tested a prototype in the lab for proof-of-concept.
Abstract:Grounding-based vision and language models have been successfully applied to low-level vision tasks, aiming to precisely locate objects referred in captions. The effectiveness of grounding representation learning heavily relies on the scale of the training dataset. Despite being a useful data enrichment strategy, data augmentation has received minimal attention in existing vision and language tasks as augmentation for image-caption pairs is non-trivial. In this study, we propose a robust phrase grounding model trained with text-conditioned and text-unconditioned data augmentations. Specifically, we apply text-conditioned color jittering and horizontal flipping to ensure semantic consistency between images and captions. To guarantee image-caption correspondence in the training samples, we modify the captions according to pre-defined keywords when applying horizontal flipping. Additionally, inspired by recent masked signal reconstruction, we propose to use pixel-level masking as a novel form of data augmentation. While we demonstrate our data augmentation method with MDETR framework, the proposed approach is applicable to common grounding-based vision and language tasks with other frameworks. Finally, we show that image encoder pretrained on large-scale image and language datasets (such as CLIP) can further improve the results. Through extensive experiments on three commonly applied datasets: Flickr30k, referring expressions and GQA, our method demonstrates advanced performance over the state-of-the-arts with various metrics. Code can be found in https://github.com/amzn/augment-the-pairs-wacv2024.
Abstract:Overfitting to the source domain is a common issue in gradient-based training of deep neural networks. To compensate for the over-parameterized models, numerous regularization techniques have been introduced such as those based on dropout. While these methods achieve significant improvements on classical benchmarks such as ImageNet, their performance diminishes with the introduction of domain shift in the test set i.e. when the unseen data comes from a significantly different distribution. In this paper, we move away from the classical approach of Bernoulli sampled dropout mask construction and propose to base the selection on gradient-signal-to-noise ratio (GSNR) of network's parameters. Specifically, at each training step, parameters with high GSNR will be discarded. Furthermore, we alleviate the burden of manually searching for the optimal dropout ratio by leveraging a meta-learning approach. We evaluate our method on standard domain generalization benchmarks and achieve competitive results on classification and face anti-spoofing problems.